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PREFACE

This manual describes the basic mechanisms of the hardware interface to the i486™
processor and gives design examples of systems using the processor. The manual is writ-
ten for designers who have moderate to advanced experience in microprocessor-based
systems.

The chapters include:

Chapter 1, “Introduction to the Processor.” Introduces the functions and features of
the 486 processor and its system components. Lists microprocessor products which
are object-code compatible with the i486 processor. Shows block diagrams of basic
system architecture and applications.

Chapter 2, “Internal Architecture.” Describes the i486 processor’s internal instruc-
tion pipelining and the nine internal functional units: the bus interface, caches,
instruction prefetch, instruction decode, integer (datapath), floating point, segmenta-
tion, and paging units.

Chapter 3, “Processor Bus.” Describes the signals on the 486 processor pins, includ-
ing their uses and timing. Describes memory and I/O space. Describes data transfers,
bus control, cache control, and floating-point error control.

Chapter 4, “Performance Considerations.” Describes the 1486 microprocessor perfor-
mance issues.

Chapter 5, “Memory Subsystem Design.” Describes the DRAM subsystem implemen-
tation for i486 microprocessor. It discusses the tested example. Appendix B contains
PLD codes and schematics example of this design.

Chapter 6, “Cache Subsystem.” Describes the second-level cache implementation for
the 1486 microprocessor. It also covers the 82C6 cache controller specifics and general
caching issue.

Chapter 7, “Peripheral Subsystem.” Describes the techniques for connection periph-
eral devices to the i486 microprocessor.

Chapter 8, “System Design.” Describes the i486 microprocessor-based system in gen-
eral and cover the basics of i486 EISA chip set.

Chapter 9, “MULTIBUS II System Interface.”
Chapter 10, “Physical Design and System Debugging.”

Appendix A, “Introduction to Intel 86 Family Architecture.” Compares hardware
characteristics of the 8086, 80286, 386™, and i486 processors. Describes how the
hardware architecture of the Intel 86 family of processors has evolved.

Appendix B, “PLD Codes and Schematics.” This contains schematics and PLD codes
for i486 DRAM design.



intel® PREFACE

TIMING DIAGRAM NOTATION

In the timing diagrams for this manual, the beginning and end of bus cycle are illustrated
with heavy, vertical, dashed lines. The beginning of data-transfer bus cycles is marked by
the assertion of the address-status (ADS#) output, as shown in the following sample
timing diagram. Signals which are “don’t care” are cross hatched as in the RDY# signal
shown in the following diagram. Signals which are not valid contain the words “not
valid” as in the BLAST# signal. Signals which are valid are shown as high or low (as in
the ADS# signal), or as both high and low (as in the PCHK# signal, indicating that the
signal is in one or the other valid state).

DATA STRUCTURE NOTATION

The 1486 processor is a “little endian” machine; this means the bytes of a word are
numbered starting from the least significant byte. Pictures of data structures in memory
show the smallest addresses at the bottom and the highest addresses at the top. Bit
positions are numbered from right to left. The following diagram illustrates these
conventions. The numerical value represented by a bit that is set (1) is equal to two
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Byte order in a 32-bit register
31 23 15 7 0

Byte 3 Byte 2 Byte 1 Byte 0

Byte order in memory

15 7 0

Byte 9 Byte 8 8

Byte 7 Byte 6 6

Byte 5 Byte 4 4

Byte 3 Byte 2 2 Bit positions are numbered
from right to left.

Byte 1 Byte 0 0 Memory addressed are
numbered from bottom to top

240552ii-1

Bit and Byte Order

raised to the power of the bit position. The bit notation in a 32-bit register corresponds
directly to the bit notation on the data bus when 32-bit data items are aligned to 32-bit
boundaries in memory.

When bits are marked as undefined or reserved, it is essential for compatibility with
future processors that software treat these bits as having a future, though unknown,
effect. Programs that read registers with undefined bits must mask off those values.
Programs that write to registers with undefined bits must first read the register and then
change only the desired defined bits before writing back to the register.

NOTE

Depending upon the values of reserved register bits will make software dependent upon
the unspecified manner in which the i486 processor handles these bits. Depending
upon reserved values risks incompatibility with future processors. AVOID ANY
DEPENDENCE UPON THE STATE OF RESERVED REGISTER BITS.
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RELATED LITERATURE
o i486™ Microprocessor Data Sheet (Order Number 240440)
e i486™ Microprocessor Programmer’s Reference Manual (Order Number 240486)

The Microprocessor and Peripheral Handbook contains additional information on other
Intel products that may be useful. The i486™ Microprocessor Data Sheet contains the
latest and only authoritative source for device specifications, such as signal timing, signal
voltage levels, and power consumption.
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CHAPTER 1
INTRODUCTION TO THE PROCESSOR

The Intel i486™ processor is the highest-performance member of the Intel 386™ family
of processors. The 486 processor executes DOS, Windows, OS/2 operating system,
UNIX System V/386, iRMX® operating system, and iRMX kernel applications faster
than any other processor. It is upward binary compatible with the 8086, 8088, 80186,
80286, 386 DX processor, and 386 SX processors. The 486 processor brings mainframe
power to PC architectures.

1.1 ARCHITECTURE

The 1486 processor includes an integer processing unit, floating-point processing unit,
memory-management unit, and cache. With these units together on a single chip, many
inter-unit signals remain on-chip, running at the speed of VLSI silicon rather than the
speed of printed circuit boards. The increased level of integration also reduces board
space, which lowers cost and simplifies design.

The i486 processor can give a two- to four-fold performance improvement over the 386
processor, depending on the clock speeds used and the specific application. Like the 386,
the 1486 processor includes both segment-based and page-based memory protection
schemes. Instruction processing time is reduced by on-chip instruction pipelining. By
performing fast, on-chip memory management and caching, the i486 processor relaxes
requirements for memory response for a given level of system performance.

The i486 processor bus is significantly faster than the 386 processor (local) bus. Both
buses are 32 bits wide, but the i486 processor bus introduces the use of a single-
frequency (1x) clock and support for parity checking, burst cycles, cacheable cycles,
cache invalidation cycles, and 8-bit data buses. There are two major advantages to using
a 1x clock. First, it simplifies system design by cutting in half the clock frequency
required by external devices. Second, elimination of the 2x clock used on the 386 pro-
cessor reduces RF emission at the higher speed of the i486 processor and simplifies
clock generation.

The 1486 processor can use burst cycles for read transfers which require multiple bus
cycles. Burst cycles are done at the continuous rate of one 32-bit (doubleword) transfer
per clock cycle. In the 386 processor, by comparison, data transfers require at least two
clock cycles per transfer. External cache, interleaved memory banks, or DRAMs with
static-column addressing may be used to achieve zero wait-state memory performance
during a burst.

Instructions can be executed in fewer clock cycles than with the 386 processor. In the
486 processor, streamlined instruction pipelining supports a continuous execution rate
of one clock cycle per instruction for most instructions. The internal cache supports a

1-1



intgl” INTRODUCTION TO THE PROCESSOR

continuous rate of one processor request per clock cycle. To support efficient task
switching in real-time multitasking and multiuser systems, the i486 processor, like the
386 processor, allows a single instruction or an interrupt to perform a complete task
switch.

Device testing is supported by a built-in self-test. Results of the built-in self-test are
available in an internal register. Assembly-language testing of the cache and translation
lookaside buffer are also supported.

Chapter 2 describes the processor’s internal architecture. Chapter 3 describes the Apro'-
cessor bus. The rest of this section highlights features of particular interest to system
designers.

1.1.1 Features

The 1486 processor offers the following features:

o Compatibility —The processor is binary-compatible with the 8086, 8088, 80186, 80286,
386 processor, and 386 SX processor.

o Full 32-bit integer processor—The processor performs a complete set of arithmetic and
logical operations on 8-, 16-, and 32-bit data types using a full-width ALU and eight
general-purpose registers.

o Separate 32-bit Address and Data Paths —Four gigabytes of physmal memory can be
addressed directly.

o Single-Cycle Execution—Many instructions execute in a smgle clock cycle.

e On-Chip Floating-Point Unit—The 32-, 64-, and 80-bit formats specified in IEEE Stan-
dard 754 are supported. The unit is binary-compatible with the 8087, 80287, 387™ DX
coprocessor, and 387 SX coprocessor.

o On-Chip Memory Management Unit— Address-management and memory-space pro-
tection mechanisms maintain the integrity of memory. This is necessary in multitask-
ing and virtual-memory environments, like those implemented by the UNIX and OS/2
operating systems. Both memory segmentation and paging are supported.

o On-Chip Cache, with Cache Consistency Support—The internal write-through cache
can hold 8K bytes of data or instructions. Cache hits are as fast as read accesses to a
processor register. Bus activity is tracked to detect alterations in the memory which
internal cache represents. The internal cache can be invalidated or flushed, so that an
external cache controller can maintain cache consistency in multi-processor
environments.

o External Cache Control—Write-back and flush controls over an external cache are
provided so that the processor can maintain cache consistency in multi-processor
environments.

o Instruction Pipelining—The fetching, decoding, execution, and address translation of
instructions is overlapped within the i486 processor. This results in a continuous exe-
cution rate of one clock cycle per instruction, for most instructions. -

1-2



H ®
intel INTRODUCTION TO THE PROCESSOR

e Burst Cycles—Burst transfers allow a new doubleword to be read from memory each
clock cycle. With this capability the internal cache and instruction prefetch buffer can
be filled very rapidly.

e Write Buffers —The processor can continue operations internally after a write, without
waiting for the write to be executed on the processor bus.

e Bus Backoff—1If another bus master needs control of the bus during a i486 processor-
bus cycle, the i486 processor will float its bus signals, then restart its cycle when the
bus again becomes available.

o Instruction Restart—Programs can continue execution following an exception gener-
ated by an unsuccessful attempt to access memory. This feature is important for
supporting demand-paged virtual memory applications.

o' Dynamic Bus Sizing— External controllers can dynamically alter the effective width of
the data bus. Bus widths of 8, 16, or 32 bits can be used.

1.1.2 Operating Modes and Compatibility

The 1486 processor can run programs in modes which give it object-code compatibility
with software written for the 8086, 80286, and 386 processor families. The operating
mode is set in software as:

o Real Mode: When the processor is reset or powered up, it is initialized in Real Mode.
This mode has the same base architecture as the 8086 processor but allows access to
the 32-bit register set of the i486 processor. The address mechanism, maximum mem-
ory size (1 Mbyte), and interrupt handling are identical to the Real Mode of the
80286 processor. Nearly all of the 1486 processor instructions are available, but the
default operand size is 16 bits; in order to use the 32-bit registers and addressing
modes, override instruction prefixes must be used. The primary purpose of Real
Mode is to set up the processor for Protected Mode operation.

e Protected Mode (also called Protected Virtual Address Mode): The complete capabilities
of the i486 processor become available when programs are run in the Protected
Mode. In addition to segmentation protection, paging can optionally be used in Pro-
tected Mode. Linear address space is four gigabytes and virtual memory programs of
up to 64 terabytes can be run. All existing 8086, 80286, and 386 processor software

~can be run under the i486 processor’s hardware-assisted protection mechanism. The
addressing mechanism is more sophisticated in Protected Mode than in Real Mode.

Virtual 8086 Mode, a sub-mode of Protected Mode, allows 8086 programs to be run
with the segmentation and paging protection mechanisms of Protected Mode. This
mode offers more flexibility than the Real Mode for running 8086 programs. Using
this mode, the i486 processor can execute 8086 operating systems and applications
simultaneously with an i486 operating system and both 80286 and 1486 processor
applications.

The hardware offers additional modes which are described in Chapter 2 of this manual.
For more information on operating modes, see the i486™ Microprocessor Data Sheet and
the i486™ Programmer’s Reference Manual.
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1.1.3 Memory Management

The memory management unit supports both segmentation and paging. Segmentation
provides several independent, protected address spaces. This is a security feature which
limits the damage a program error can cause. For example, a program’s stack space
should be prevented from growing into its code space. The segmentation unit maps the
separate address spaces seen by programmers into one unsegmented, linear address
space.

Paging provides access to data structures larger than the available memory space by
keeping them partly in memory and partly on disk. Paging breaks the linear address
space into units of 4K bytes called pages. When a program makes its first reference to a
page, the program can be stopped, the new page copied from disk, and the program
restarted. Programs tend to use only a few pages at a time, so a processor with paging
can simulate a large address space in RAM using a small amount of RAM, plus storage
on a disk.

1.1.4 On-Chip Cache

A software-transparent 8K-byte cache stores recently accessed information on the pro-
cessor chip. Both instructions and data can be cached. If the processor needs to read
data which is available in the cache, the cache responds and a time-consuming external
memory cycle is avoided. This allows the processor to complete transfers faster and
reduces traffic on the processor bus.

The cache uses a write-through protocol; all writes to the cache are immediately passed
on to the external memory which the cache represents, rather than stored for future
memory updating (write-back). To reduce the impact of writes on performance, the
processor can buffer write cycles; an operation which writes data to memory can finish
before the write cycle is actually performed on the processor bus.

The processor performs a cache line fill to place new information into the on-chip cache.
This operation reads four doublewords into a cache line, the smallest unit of storage
which can be allocated in the cache. Most read cycles on the processor bus result from
cache misses, which cause cache line fills.

Mechanisms are provided to maintain cache consistency between memory and cached
data in multiple bus master environments. The mechanisms protect the i486 processor
from reading invalid data from its own internal cache or from external caches. For
example, when the 1486 processor attempts to read an operand from memory that is also
held in the cache of another bus master, the other bus master must be forced to write its
cached data back to memory before the i486 processor can complete its read from mem-
ory. This is done because the cached version of the data may have been updated, and so
may now be different from the version stored in memory.
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Most memory systems optimize the speed of access on a read cycle. This is because the
large majority of all memory accesses in a typical system are read accesses. The i486
processor’s internal cache changes this ratio. Most read requests will result in cache hits,
so most memory accesses on the processor bus will be write cycles. Memory optimization
should be done with this in mind.

1.1.5 Floating-Point Unit

The internal floating-point unit performs floating-point operations on the 32-, 64- and
80-bit arithmetic formats specified in IEEE Standard 754. Like the integer processing
unit, the floating-point unit architecture is binary-compatible with the 8087, 80287
coprocessors. The architecture is 100% compatible with the 387 DX coprocessor, and
387 SX coprocessor.

Floating-point instructions are executed fastest when they are entirely internal to the
processor. This occurs when all operands are in the internal registers or cache. When
data needs to be read from or written to external locations, burst transfers minimize the
time required and a bus locking mechanism ensures that the bus is not relinquished to
other bus masters during the transfer. Bus signals are provided to monitor errors in
floating-point operations and to control the processor’s response to such errors.

1.2 SYSTEM COMPONENTS

Intel offers several chips which are highly compatible with the 1486 processor. These
components can be used to design high-performance systems with a minimum of effort
and cost. For components not directly connectable to the i486 processor bus, industry-
standard interfaces can be used, such as the MULTIBUS II system bus.

For Ethernet interfacing, the 82596 32-bit LAN coprocessor off-loads network data man-
agement and physical-layer LAN functions to a single chip. The 82320-family 32-bit
MCA system peripherals provide efficient, low-cost interfacing to Micro Channel expan-
sion buses for PS/2 systems. The 82350-family 32-bit EISA system peripherals provide
efficient, low-cost interfacing to EISA expansion buses. Several other components are
currently in development.

Table 1-1 lists the components which interact directly with the 1486 processor bus.
Chapter 9 gives more details on many of these system peripherals. Chapter 10 describes
MULTIBUS II system bus interfacing.

1.2.1 i486 Processor

The 486 processor provides all of the integer and floating-point CPU functions plus
many of the peripheral functions required in a typical computer system. It executes the
complete instruction set of the 386 processor and 387 DX numerics coprocessor, with
some extensions. The processor eliminates the need for an external memory manage-
ment unit, and the on-chip cache minimizes the need for external cache and associated
control logic.
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Table 1-1. System Components

Component Name Description

32-Bit General-Purpose CPU | i486™ CPU General-purpose processor with floating-
point arithmetic, memory management,
and cache.

32-Bit LAN Coprocessor 82596CA Local-area network communications copro-
cessor supporting CSMA/CD protocol.

32-Bit MCA System 82320 Functional support for Micro Channel

Peripherals (PS/2) expansion buses and boards.
Seven chips in the set.

32-Bit EISA System 82350 Functional support for EISA expansion

Peripherals buses and boards. Four chips in the set.

485Turbocache Module 485Turbocache Module | Second-level cache module.

for i486 microprocessor

Chapters 2 through 7 of this manual focus on the details of the i486 processor’s archi-
tecture, hardware functions, and interfacing. For more information on the architecture
and software interface, see the i486™ Processor Programmer’s Reference Manual.

1.2.2 LAN Coprocessor

The 82596CA LAN coprocessor is a 32-bit multitasking local-area network communica-
tions processor that supports 80-Mbyte/second transfers at 25 MHz. It implements the
carrier-sense, multiple-access and collision-detect (CSMA/CD) link access protocol and
interfaces the i486 processor to a wide variety of networks and functions, including:

o IEEE 802.3 networks (Ethernet, HDLC, Cheapernet, StarLAN, and others).
¢ IBM PC networks (baseband and broadband).
e Proprietary CSMA/CD networks.

o HDLC frame delimiting.

The 82596 LAN coprocessor is typically used in desktop computers, file servers, and
gateways. It provides a high-performance front-end controller for heavy data traffic, and
it permits extensive protocol-layer software implementations. A complete hardware
interface to Ethernet networks, for example, can be implemented with the 82596 LAN
coprocessor and the 82C501AD Ethernet serial interface device. The 1486 processor and
82596 LAN coprocessor communicate by means of a memory-based mailbox, command
system and buffer system. The coprocessor fetches and executes high-level commands
from shared memory to control all time-critical network functions. It performs command
chaining and inter-processor communication. It is object-code compatible with the 82586
LAN coprocessor, with extensions which simplify software drivers.
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Because the 82596 LAN coprocessor can execute commands directly from main memory
and operate on data buffers without processor intervention, supervision from the 1486
processor is minimized. In large networks, the high performance of the i486 processor in
executing control and protocol software minimizes the need for host intervention.

1.2.3 485Turbocache Module

The 485Turbocache Module is a high-performance, optional, write-through, second-level
cache designed specifically for the 1486 microprocessor. It consists of the 82485 cache
controller and 4 to 8 custom SRAM:s for a complete cache solution in one package.

The 485Turbocache Module is a performance upgrade for 25-MHz or 33-MHz 486
microprocessor systems. One module provides 64K or 128K bytes of external cache
memory. Up to four modules may be cascaded for up to 512K bytes of external cache
memory. The module is optional, that is a single socket allows three price/performance
options: no cache, a 64K cache, or a 128K cache.

The module is organized as two-way, set-associative with a line size of 16 bytes. The
interface to the 1486 microprocessor is simple since all CPU timings and bus cycles are
supported. The module also supports Burst Mode, BOFF# cycles, and the same invali-
dation cycles as the processor.

While performance benefits are extremely application sensitive, the module typically
provides from 5% to 30% performance improvement. The 485Turbocache Module pro-
vides the best price-performance ratio for 25- and 33-MHz 486 microprocessor designs.
Chapter 6 discusses the 485Turbocache Module in detail.

1.2.4 EISA Chip Set

The 82350 family of peripherals interfaces the i486 processor to an extended industry
standard architecture (EISA) bus. The chip set includes three motherboard peripherals
(bus controller, integrated system peripheral, and bus buffers) and one peripheral for
EISA-bus expansion boards (a bus master interface chip). The EISA standard maintains
full compatibility with the existing ISA (also known as AT) standard. The EISA expan-
sion board connector is a superset of the ISA expansion board connector, allowing exist-
ing 8- and 16-bit ISA boards to be installed in EISA slots. This is discussed in detail in
Chapter 8.

The EISA bus controller performs data path translation, bus timing, and centralized bus
arbitration. The improvements over the ISA standard are provided transparently, even
to existing ISA DMA devices.

The EISA integrated system peripheral contains most of the EISA-specific peripheral
functions, including DMA controller, 2 eight-channel interrupt controllers, 4 counter
modules, EISA bus arbiter, and DRAM refresh address generator. The peripheral oper-
ates in a tightly coupled environment with the EISA bus controller to generate control
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signals for the DMA transfers. A master on any of the buses can communicate in parallel
with both devices. Transfers between buses of varying sizes or transfers with misaligned
addresses are performed correctly.

The EISA bus-master interface controller is the primary interface between local func-
tions on an EISA expansion board and the EISA bus on the i486 system motherboard.
The primary function of the controller is to support burst transfers between the expan-
sion board and main memory. Data transfer rates of up to 33 Mbytes/second are
supported —the fastest available on an EISA bus. With the controller, an EISA expan-
sion board can be implemented with simple logic similar to that used in traditional ISA
DMA designs. The general-purpose command and status interface allows a variety of
software control protocols by a local expansion-board processor. Data transfers on the
local processor bus are similar to traditional DMA transfer protocols. Local processors
are supported with the ability to access individual locations in system memory or
I/O space.

1.2.5 High-Performance PLDs

Programmable Logic Devices (PLDs) have become a vital factor in systems design. Intel
manufactures a line of CMOS PLDs that meet the performance requirements of high-
speed systems while reducing power consumption and heat dissipation. Some of these
devices, such as the 85C220 (20-pin general-purpose PLD), 85C224 (24-pin general-
purpose PLD), and 85C508 (28-pin-address decoder PLD), are shown in this manual.

The 85C220 and 85C224 PLDs are both supersets to commonly used bipolar and CMOS
alternatives (16x8 and 20x8 type devices). Both Intel PLDs are available at clock speeds
to support fast state-machines in i486 systems. The 85C508 is a 28-pin address decoder

PRI I Sy P ~Lo

PLD with integral transparent latches on its eight outputs.

1.3 SYSTEM ARCHITECTURE

The 486 processor can be the foundation for systems ranging from single-processor to
multiprocessor. A single-processor system might be a personal computer, updated to use
the i486 processor. A system design of this type offers higher performance through the
integration of floating-point processing, memory management, and caching. More com-
plex systems may use multiple processors which provide, at chip-level, the equivalent of
board-level functions. Designs of this type are typically used in multiuser machines,
scientific workstations, and engineering workstations.

A typical system, something between a single-processor design and a more complex
multiprocessing design, is shown in Figure 1-1. This example uses a single i486 processor
with external cache and the 82596 LAN coprocessor. Other examples of system design
are illustrated in the figures that follow.
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i486™
PROCESSOR
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PROCESSOR BUS
EXTERNAL BUS
CACHE CONTROLLER
(OPTIONAL)
SYSTEM BUS
BUS 82596 LAN
MEMORY CONTROLLER COPROCESSOR

1

EXTERNAL BUS

240552i1-1

Figure 1-1. A Typical i486™ Processor System

1.3.1 Single Processor System

In single-processor systems, the processor handles all peripheral resources and intelli-
gent devices, and executes all software. The 486 processor does this in a more efficient
way and for a wider range of task complexity than earlier processors. Single-processor
systems offer small size and low cost in exchange for flexibility in upgrading or expanding
the system. Typical applications include personal computers, small desktop workstations
and embedded controllers. Such applications are implemented as a single board, usually
called a motherboard; the processor bus does not extend beyond the board occupied by

the 1486 processor.
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Figure 1-2 shows an example of such a system. In a single-processor system, devices
which share the processor bus must be selected carefully. All components must interact
directly with the processor bus or have interface logic which allows them to do so. The
total bus bandwidth requirements of other components should be no more than 50% of
the available processor-bus bandwidth. Traffic above 50% will degrade performance of
the processor.

Two basic design approaches are used to elaborate the single-processor system into more
complex systems. The first approach is to add more devices to the processor bus. This
can be done up to the limit mentioned above: no more than 50% of the processor-bus
bandwidth should be used by devices other than the i486 processor. The second design
approach is to add more buses to the system. By adding buses, greater bus bandwidth is
created in the system as a whole, which in turn allows more devices to be added to the
system. The two approaches go hand-in-hand to expand the capabilities of a system. The
sections below give only a few examples of the great design variety that is possible with
devices that operate compatibly with the 486 processor.

1.3.2 Loosely Coupled Multiprocessor System

Loosely coupled multiprocessor systems include board-level products which communi-
cate with one another through a standard system bus, such as the MULTIBUS II system
bus described in Chapter 9. In this architecture, each board contains a processor and

485TURBOCACHE i486™
MODULE PROCESSOR
PROCESSOR BUS
DMA PERIPHERAL
MEMORY CONTROLLER CONTROLLER

240552i1-2

Figure 1-2. Single-Processor System
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associated logic. There is typically only one processor per board. Components within
each board communicate on either a processor bus or on the buffered system bus. The
system bus provides extra bandwidth beyond the processor bus.

A typical system is shown in Figure 1-3. Such system-bus boards typically occur in
higher-end personal computers and systems which allow for modular expansion. A typi-
cal design would include a coprocessor or LAN interface board in a personal computer,
or a network-interface board in a file server or gateway. Systems built from these boards
can contain a mix of processor types. Devices attached to the processor bus on a given
board make demands which may affect system performance. For example, the 82596
LAN coprocessor may use up to 3% of the bus bandwidth to handle 10-Mbit/second
Ethernet traffic.

1.3.3 External Cache

External cache allows a system to achieve maximum performance. This cache is essential
in tightly coupled multi-processor systems. The external cache should consist of cache
memory (usually fast SRAM) and cache control logic.

g I 0 g U 1
PROCESSOR BUS PROCESSOR BUS
il U
BUS BUS
CONTROLLER CONTROLLER
i il
MULTIBUS I

240552i1-3

Figure 1-3. Loosely Coupled System
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External cache systems typically provide access to the cache from both the processor and
the system buses. This is shown in Figure 1-4. These caches typically monitor processor
memory accesses, optimal mix of data and instructions, processor access time, and con-
sistency between cache and memory.

1.4 System Applications

A majority of i486 processor systems can be grouped into these types:
o Personal Computers -
¢ Minicomputers and Workstations

¢ Embedded Controllers

i486™
PROCESSOR

il

PROCESSOR BUS

L

EXTERNAL
CACHE t:> SRAM

CONTROLLER

1
L

T

SYSTEM BUS

T
\

DRAM :> DRAM l |
CONTROLLER ARRAY

240552i1-4

Figure 1-4. External Cache
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Each type of system has distinct design goals and constraints, as described in the follow-
ing sections. Software running on the processor, even in standalone embedded applica-
tions, should use a standard operating system such as DOS, Windows, OS/2 operating
system, UNIX System V/386, iRMX operating system, or iRMX kernel for ease of
debugging, documentation, and transportability.

1.4.1 Personal Computers

In single-processor systems, the processor will interact directly with I/O devices and
DRAM memory. Other bus masters, such as the 82596 LAN coprocessor, typically reside
on the system bus; conventional personal computer architecture puts most peripherals
on separate plug-in boards. Expansion is typically limited to memory boards and I/O
boards. A standard I/O architecture such as MCA or EISA is used. System cost and size
are very important. Figure 1-5 shows an example of a personal computer application.

OPTIONAL CACHE 1486™ LOCAL
485TURBOCACHE PROCESSOR MEMORY
MODULE
PROCESSOR BUS
LOCAL
BUS
PERIPHERAL
NTROLLER
CONTROLLER co
MCA OR EISA BUS
sLow OTHER
MEMORY PERIPHERAL

240552i1-5

Figure 1-5. Personal Computer Example
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External cache is optional in such environments, particularly if system performance is
not a critical parameter. Where an external cache is used, memory-access speed will
improve only if the cache is designed as a write-back system and memory access has zero
to one wait states.

- 1.4.2 Minicomputers and Workstations

Minicomputer and workstation systems can be implemented with a loosely coupled
architecture. These typically allow expansion of the number of CPUs, memory modules,
and I/O devices. Standard system buses like the MULTIBUS 1I system bus are used.
Minicomputers and workstations are more performance oriented and less cost oriented
than personal computers. Higher-performance systems may need a tightly coupled archi-
tecture. Due to the variety of architectures in which minicomputers and workstations are
implemented, no representative design example can be given.

The high performance of the i486 processor will cloud current distinctions between per-
sonal computers, minicomputers, and workstations. Personal computers can be viewed as
lower-cost minicomputers sharing software and data with desktop workstations. Unlike
personal computers, minicomputers are likely to use ECC memory and an external
cache. Fast communication controllers such as the 82596 LAN coprocessor can be used
on the processor bus. File servers can be designed to allow multiple communication links
on the same board, connecting directly to other 82596 LAN coprocessors on the
processor bus. '

1.4.3 Embedded Controllers

Most embedded controllers perform real-time tasks. The performance of the 1486 pro-
cessor and its compatibility with the extensive 386 processor installed base are important
factors in its choice. Embedded controllers are usually implemented as standalone sys-
tems, with less expansion capability than other applications because they are tailored so
specifically to a single environment.

If code must be stored in EPROM or ROM for non-volatility, but performance is also a
critical issue, then the code should be copied into RAM which is provided specifically for
this purpose. Frequently used routines and variables, such as interrupt handlers and
interrupt stacks, can be locked in the processor’s internal cache so that they are always
available quickly.

Embedded controllers usually require less memory than other applications, and control
programs are usually tightly written machine-level routines which need optimal perfor-
mance in a limited variety of tasks. The processor typically interacts directly with 1/O
devices and DRAM memory. Other peripherals connect to the system bus, as shown in
Figure 1-6. : '
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Figure 1-6. Embedded Controller Example
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CHAPTER 2
INTERNAL ARCHITECTURE

Internally, the i486™ processor has nine functional units which operate in parallel.
Figure 2-1 shows the nine internal units:

e Bus Interface

e Cache

o Instruction Prefetch
¢ Instruction Decode.

e Control

e Integer and Datapath
o Floating-Point

e Segmentation

e Paging

The internal architecture is very much like that of the 386 processor, except for the new
on-chip cache and floating-point units.

Signals from the external 32-bit processor bus reach the internal units through the bus
interface unit. On the internal side, the bus interface unit and cache unit pass addresses
bidirectionally through a 32-bit bidirectional bus. Data is passed from the cache to the
bus interface unit on a 32-bit data bus. The closely coupled cache and instruction
prefetch units simultaneously receive instruction prefetches from the bus interface unit
over a shared 32-bit data bus, which is also used by the cache to receive operands and
other types of data. Instructions in the cache are accessible to the instruction prefetch
unit, which contains a 32-byte queue of instructions waiting to be executed.

When internal requests for data or instructions can be satisfied from the cache, time-
consuming cycles on the external processor bus are avoided. The bus interface unit is
only involved when an operation needs access to the processor bus. Many internal oper-
ations are therefore transparent to the external system.

The instruction decode unit translates instructions into low-level control signals and
microcode entry points. The control unit executes microcode and controls the integer,
floating-point, and segmentation units. Computation results are placed in internal regis-
ters within the integer or floating-point units, or in the cache. Internal storage locations
(datapaths) are kept in the integer unit.

The cache shares two 32-bit data buses with the segmentation, integer, and floating-
point units. These two buses can be used together as a 64-bit interunit transfer bus.
When 64-bit segment descriptors are passed from the cache to the segmentation unit,
32 bits are passed directly over one data bus and the other 32 bits are passed through the
integer unit, so that all 64 bits reach the segmentation unit simultaneously.
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Figure 2-1. Internal Architecture
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Address generation is performed by the segmentation and paging units. Logical
addresses are translated by the segmentation unit and passed to the paging and cache
units on a 32-bit linear address bus. The paging unit translates linear addresses into
physical addresses, which are passed to the cache on a 20-bit bus.

The next section describes the internal instruction pipelining method. Following that,
Sections 2.2 through 2.10 describe each of the nine internal units.

2.1 Instruction Pipelining

Not every instruction involves all internal units. When an instruction needs the partici-
pation of several units, each unit operates in parallel with others on instructions at
different stages of execution. Although each instruction is processed sequentially, several
instructions are at varying stages of execution in the processor at any given time. This is
called instruction pipelining. Instruction prefetch, instruction decode, microcode execu-
tion, integer operations, floating-point operations, segmentation, paging, cache manage-
ment, and bus interface operations are all performed simultaneously. Figure 2-2 shows
some of this parallelism for a single instruction: the instruction fetch, 2-stage decode,
execution, and register write-back of the execution result. Each stage in this pipeline can
occur in one clock cycle.
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Figure 2-2. Internal Pipelining
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The internal pipelining on the 486 processor offers an important performance advan-
tage over many single-clock RISC processors: in the 486 processor, data can be loaded
from the cache with one instruction and used by the next instruction in the next clock.
This performance advantage results from the stage-1 decode step, which initiates mem-
ory accesses before the execution cycle. Because most compilers and application pro-
grams follow load instructions with instructions which operate on the loaded data, this
method optimizes the execution of existing binary code.

The method has a performance tradeoff: an instruction sequence which changes register
contents and then uses that register in the next instruction to access memory takes three
clocks rather than two. This tradeoff is only a minor disadvantage, however, since most
instructions which access memory use the stable contents of the stack pointer or frame
pointer, and the additional clock is not used very often. Compilers often place an unre-
lated instruction between one which changes an addressing register and one which uses
the register. Such code is compatible with the 386 processor, and the i486 processor
provides special stack increment/decrement hardware and an extra register port to exe-
cute back-to-back stack push/pop instructions in a single clock.

2.2 Bus Interface Unit

The bus interface unit prioritizes and coordinates data transfers, instruction prefetches,
and control functions between the processor’s internal units and the outside system.
Internally, the bus interface unit communicates with the cache and the instruction
prefetch units through three 32-bit buses, as shown in Figure 2-1. Externally, the bus
interface unit provides the processor bus signals, described in Chapter 3. Except for
cycle definition signals, all external bus cycles—memory reads, instruction prefetches,
cache line fills, etc. —look like conventional microprocessor cycles to external hardware,
with all cycles having the same bus timing.

The bus interface unit contains the following architectural features:

o Address Transceivers and Drivers—The A2-A31 address signals are driven on the pro-
cessor bus, together with their corresponding byte-enable signals, BEO#-BE3#. The
high-order 28 address signals are bidirectional, allowing external logic to drive cache
invalidation addresses into the processor.

o Data Bus Transceivers—The D0-D31 data signals are driven onto and received from
the processor bus.

e Bus Size Control—Three sizes of external data bus can be used—32, 16, and 8 bits
wide. Two inputs from external logic specify the width to be used. Bus size can be
changed on a cycle-by-cycle basis.

o Write Buffering— Up to four write requests can be buffered, allowing many internal
operations to continue without waiting for write cycles to be completed on the pro-
cessor bus.

o Bus Cycles and Bus Control— A large selection of bus cycles and control functions are
supported, including burst transfers, non-burst transfers (single- and multiple-cycle),
bus arbitration (bus request, bus hold, bus hold acknowledge, bus locking, bus
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pseudo-locking, and bus backoff), floating-point error signalling, interrupts, and reset.
Two software-controlled outputs enable page caching on a cycle-by-cycle basis. One
input and one output are provided for controlling burst read transfers.

o Parity Generation and Control— Even parity is generated on writes to the processor
and checked on reads. An error signal indicates a read parity error.

o Cache Control—Cache control and consistency operations are supported. Three
inputs allow the external system to control the consistency of data stored in the inter-
nal cache unit. Two special bus cycles allow the processor control the consistency of
external cache.

2.2.1 Data Transfers

To support the cache, the bus interface unit reads 16-byte cacheable transfers of oper-
ands, instructions, and other data on the processor bus and passes them to the cache
unit. When cache contents are updated from an internal source, such as a register, the
bus interface unit writes the updated cache information to the external system. Non-
cacheable read transfers are passed through the cache to the integer or floating-point
units.

During instruction prefetch, the bus interface unit reads instructions on the processor
bus and passes them to both the instruction prefetch unit and the cache. The instruction
prefetch unit may then obtain its inputs directly from the cache.

2.2.2 Write Buffers

The bus interface unit has temporary storage for buffering up to four 32-bit write trans-
fers to memory. Addresses, data, or control information can be buffered. Single I/O-
mapped writes are not buffered, although multiple I/O writes may be buffered. The
buffers can accept memory writes as fast as one per clock. Once a write request is
buffered, the internal unit which generated the request is free to continue processing. If
no higher-priority request is pending and the bus is free, the transfer is propagated as an
immediate write cycle to the processor bus. When all four write buffers are full, any
subsequent write transfer will stall inside the processor until a write buffer becomes
available.

The bus interface unit can re-order pending reads in front of buffered writes. This is
done because pending reads can prevent an internal unit from continuing, whereas buff-
ered writes need not have a detrimental effect on processing speed.

Writes are propagated to the processor bus in the same first-in-first-out order in which
they are received from the internal unit. However, a subsequently generated read
request (data or instruction) may be re-ordered in front of buffered writes. As a protec-
tion against reading invalid data, this re-ordering of reads in front of buffered writes will
only occur if all buffered writes are cache hits. Because an external read will only be
generated for a cache miss, and will only be re-ordered in front of buffered writes if all
such buffered writes are cache hits, any read generated on the external bus with this
protection will never read a location which is about to be written by a buffered write.

2-5



intgl” INTERNAL ARCHITECTURE

This re-ordering can only happen once for a given set of buffered writes, because the
data returned by the read cycle could otherwise replace data about to be written from
the write buffers.

To ensure that no more than one such re-ordering is done for a given set of buffered
writes, all buffered writes are re-flagged as cache misses when a read request is re-
ordered ahead of them. Buffered writes thus marked are propagated to the processor
bus before the next read request is acted upon. Invalidation of data in the internal cache
also causes all pending writes to be flagged as cache misses. Disabling the cache unit
disables the write buffers, which eliminates any possibility of re-ordering bus cycles.

2.2.3 Locked Cycles

The processor can generate signals to lock a contiguous series of bus cycles. These cycles
can then be performed without interference from other bus masters, if external logic
observes these locking signals. One example of a locked operation is a semaphor read-
modify-write update, where a resource control register is updated. No other operations
should be allowed on the bus until the entire locked semaphor update is completed.

When a locked read cycle is generated, the read is not attempted from the internal
cache. All pending writes in the buffer are completed first. Only then is the read part of
the locked operation performed, the data modified, the result placed in a write buffer,
and a write cycle performed on the processor bus. This sequence of operations ensures
that all writes are performed in the order in which they were generated.

2.2.4 1/O Transfers

Transfers to and from I/O locations have some restrictions to ensure data integrity:
e Caching—1/O reads are never cached.

¢ Read Re-Ordering—1/O reads are never re-ordered ahead of buffered writes to mem-
ory. This ensures that the processor will have completed updating all memory loca-
tions before reading status from a device.

o Writes— Single 1/O writes are never buffered. Thus, when processing an OUT instruc-
tion, internal execution stops until all buffered writes and the I/O write are completed
on the processor bus. This allows time for external logic to drive a cache invalidate
cycle or mask interrupts before the processor executes the next instruction. The pro-
cessor will have completed updating all memory locations before writing to the I/O
location. However, repeated OUT instructions may be buffered.

I/O device recovery time; is determined by the write buffers and the cache unit. In the
386 processor, back-to-back write recovery time; could be guaranteed to exceed a certain
value by inserting a jump to the next instruction that writes to the I/O device. This forced
an instruction prefetch cycle which could only be performed after the preceding write
was completed. This technique is not used in the i486 processor because a prefetch can
be satisfied internally by the cache and recovery time may be too short. The same effect
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is achieved in the 1486 processor by explicitly generating a read to an area of memory
that is not cacheable. Because the i486 processor does not buffer single I/O writes, such
a read will not be done until the I/O write is completed.

2.3 Cache Unit

The cache unit stores copies of recently read instructions, operands, and other data.
When the processor requests information already in the cache—called a cache hit—no
processor-bus cycle is required. When the processor requests information not in the
cache—called a cache miss—the information is read into the cache in one or more
16-byte cacheable data transfers, called cache line fills. When an internal write request is
generated to an area currently in the cache, two things happen: the cache is updated,
and the write is also passed through the cache to memory. This is called cache
write-through.

The cache transfers data to other units on two 32-bit buses, as shown in Figure 2-1. The
cache receives linear addresses on a 32-bit bus and the corresponding physical addresses
on a 20-bit bus. The cache and instruction prefetch; units are closely coupled. 16-byte
blocks of instructions in the cache can be passed quickly to the instruction prefetch unit.
Both units read information in 16-byte blocks.

The cache can be accessed as often as once each clock. The cache acts on physical
addresses, which minimizes the number of times the cache must be flushed. When both
the cache and the cache write-through functions are disabled, the cache may be used as
a high-speed RAM.

2.3.1 Cache Structure

The cache has a four-way set associative organization. There are four possible cache
locations to store data from a given area of memory. Four-way association is a compro-
mise between the speed of a direct-mapped cache during cache hits, and the high cache-
hit ratio of fully associative cache. As shown in Figure 2-3, the 8-Kbyte data block is
divided into four data ways, each containing 128 16-byte sets, or cache lines. Each cache
line holds data from 16 successive byte addresses in memory, beginning with an address
divisible by 16.

Cache addressing is performed by dividing the high-order 28 bits of the physical address
into three parts, as shown in Figure 2-3. The 7 bits of the index field specify the set
number, one of 128, within the cache. The high-order 21 bits are the tag field; these bits
are compared with tags for each cache line in the indexed set, and they indicate whether
a 16-byte cache line is stored for that physical address. The low-order 4 bits of the
physical address select the byte within the cache line. Finally, a 4-bit valid field, one for
each way within a given set, indicates whether the cached data at that physical address is
currently valid.
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Figure 2-3. Cache Organization

2.3.2 Cache Updating

When a cache miss occurs on a read, the 16-byte block containing the requested infor-
mation is written into the cache. Data in the neighborhood of the required data is also

read into the cache, but the exact position of data within the cache line depends on its
location in memory with respect to addresses divisible by 16.

Any'area of memory is cacheable, but any page of memory can be declared not cache-
able by setting a bit in its page table entry. When a read from memory is initiated on the
bus, external logic can indicate whether the data may be placed in cache, as discussed in

Chapter 3. If the read is cacheable, the processor attempts. to read an entire 16-byte
cache line.
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The unit is a write-through cache. Cache line fills are performed only for read misses,
never for write misses. When the processor is enabled for normal caching and write-
through operation, every internal write to the cache (cache hit) not only updates the
cache but is also passed along to the bus interface unit and propagated through the
processor bus to memory. The only conditions under which data in the cache differs
from the corresponding data in memory occur when a processor write cycle to memory is
delayed by buffering in the bus interface unit, or when an external bus master alters the
memory area mapped to the internal cache.

2.3.3 Cache Replacement

Replacement in the cache is handled by a pseudo-LRU (least recently used) mechanism.
This mechanism maintains three bits for each set in the valid/LRU block, as shown in
Figure 2-3. The LRU bits; are updated on each cache hit or cache line fill. Each cache
line (four per set) also has an associated valid bit which indicates whether the line
contains valid data. When the cache is flushed or the processor is reset, all of the valid
bits are cleared. When a cache line is to be filled, a location for the fill is selected by
simply finding any cache line which is invalid. If no cache line is invalid, the LRU bits
select the line to be overwritten. Valid bits are not set for lines which are only partially
valid.

Cache lines can be invalidated individually by a cache line invalidation operation on the
processor bus. When such an operation is initiated, the cache unit compares the address
to be invalidated with tags for the lines currently in cache and clears the valid bit if a
match is found. A cache flush operation is also available. This invalidates the entire
contents of internal cache unit.

2.3.4 Cache Configuration

Configuration of the cache unit is controlled by two bits in the processor’s machine
status register (CR0). One of these bits enables caching (cache line fills). The other bit
enables memory write-through. The four configuration options are shown in Table 2-1.
Chapter 3 gives details.

When caching is enabled, memory reads and instruction prefetches are cacheable. These
transfers will be cached if external logic asserts the cache enable input in that bus cycle,
and if the current page table entry allows caching. During cycles in which caching is
disabled, cache lines will not be filled on cache misses. However, the cache remains
active even though it is disabled for further filling. Data already in the cache will be used
if it is still valid. Only when all data in the cache is flagged invalid, as happens in a cache
flush, will all internal read requests be propagated as bus cycles to the external system.

When cache write-throughs are enabled, all writes, including those which are cache hits,
are written through to memory. Invalidation operations will remove a line from cache if
the invalidate address maps to a cache line. When cache write-throughs are disabled, an
internal write request which is a cache hit will not cause a write-through to memory, and
cache invalidation operations are disabled. With both caching and cache write-through
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Table 2-1. Cache Configuration Options

Write-Through ‘
Cache Enabled Enabled Operating Mode
no no Cache line fills, cache write-throughs, and cache invalidations
) are disabled. This configuration allows the internal cache to
be used as high-speed static RAM.
no yes Cache line fills are disabled, and cache write-throughs and
cache invalidations are enabled. This configuration allows
software to disable the cache for a short time, then re- -enable
it without flushing the original contents.
yes ' no INVALID
yes . yes Cache line fills, cache write-throughs, and cache invalidations
are enabled. The is the normal operating configuration.

disabled, the cache can be used as a high-speed static RAM. In this configuration, the
only write cycles which are propagated to the processor bus are cache misses, and cache
invalidation operations are ignored.

2.4 INSTRUCTION PREFETCH UNIT

When the bus interface unit is not performing bus cycles to execute an instruction, the
instruction prefetch unit; uses the bus interface unit to prefetch instructions. By reading
instructions before they are needed, the processor rarely needs to wait for an 1nstruct10n
prefetch cycle on the processor bus. :

Instruction prefetch cycles; read 16-byte blocks of instructions;, starting at addresses
numerically greater than the last-fetched instruction. The starting address is generated
by the prefetch unit, which has a direct connection (not shown in Figure 2-1) to the
paging unit. The 16-byte prefetched blocks are read into both the prefetch and cache
units simultaneously. The prefetch queue; in the prefetch unit stores 32 bytes of instruc-
tions. As each instruction is fetched from the queue, the code part is sent to the instruc-
tion decode unit and (depending on the instruction) the displacement part is sent to the
segmentation unit where it is used for address calculation. If loops are encountered in
the program being executed, the prefetch unit gets coples of previously executed instruc-
tions from the cache.

The prefetch unit has the lowest priority for processor bus access. Assuming zero wait-
state memory access, prefetch: activity never delays execution. However, if there is:no
pending data transfer, prefetching may use bus cycles that:would otherwise be idle. The
prefetch unit is flushed whenever the next instruction needed is not in numerical
sequence with the previous instruction — for example durmg Jumps task switches, excep-
tions, and interrupts. :
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The prefetch unit will never access beyond the end of a code segment and it will never
access a page that is not present. However, prefetching may cause problems for some
hardware mechanisms. For example, prefetching may cause an interrupt when program
execution nears the end of memory. To keep prefetching from reading past a given
address, instructions should come no closer to that address than one byte plus one
aligned 16-byte block.

2.5 INSTRUCTION DECODE UNIT

The instruction decode unit; receives instructions from the instruction prefetch unit and
translates them in a two-stage process into low-level control signals and microcode entry
points, as shown in Figure 2-1. Most instructions can be decoded at a rate of one per
clock. Stage 1 of the decode, shown in Figure 2-2, initiates a memory access. This allows
execution of a two-instruction sequence which loads and operates on data in just two
clocks, as described above in Section 2.2.

The decode unit simultaneously processes instruction prefix bytes, opcodes, modR/M
bytes, and displacements. The outputs include hardwired microinstructions to the seg-
mentation, integer, and floating-point units. The unit is flushed whenever the instruction
prefetch unit is flushed.

2.6 CONTROL UNIT

The control unit interprets the instruction word and microcode entry points received
from the instruction decode unit. The control unit has outputs with which it controls the
integer and floating-point processing units. It also controls segmentation because seg-
ment selection may be specified by instructions.

The control unit contains the processor’s microcode. Many instructions have only one
line of microcode, so they can execute in an average of one clock cycle. Figure 2-2 shows
how execution fits into the internal pipelining mechanism.

2.7 INTEGER (DATAPATH) UNIT

The integer and datapath unit identifies where data is stored and performs all of the
arithmetic and logical operations available in the 386 processor’s instruction set, plus a
few new instructions. It has eight 32-bit general-purpose registers, several specialized
registers, an ALU, and a barrel shifter. Single load, store, addition, subtraction, logic,
and shift instructions are executed in one clock.

Two 32-bit bidirectional buses connect the integer and floating-point units. These buses
are used together for transferring 64-bit operands. The same buses also connect the
processing units with the cache unit. The contents of the general purpose registers are
sent to the segmentation unit on a separate 32-bit bus for generation of effective
addresses. :
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2.8 FLOATING-POINT UNIT

The floating-point unit; executes the same instruction set as the 387 math coprocessor.
The unit contains a push-down register stack and dedicated hardware for interpreting
the 32-, 64-, and 80-bit formats specified in IEEE Standard 754. An output signal passed
through to the processor bus indicates floating-point errors to the external system, which
in turn can assert an input to the processor indicating that the processor should ignore
these errors and continue normal operations.

2.9 SEGMENTATION UNIT

A segment is a protected, independent address space. Segmentation is used to enforce
isolation among application programs, to invoke recovery procedures, and to isolate the
effects of programming errors. '

The segmentation unit translates a segmented address issued by a program, called a
logical address, into an unsegmented address, called a linear address. The locations of

. segments in the linear address space are stored in data structures called segment descrip-
tors. The segmentation unit performs its address calculations using segment descriptors
and displacements (offsets) extracted from instructions. Linear addresses are sent to the
paging and cache units. When a segment is accessed for the first time, its segment
descriptor is copied into a processor register. A program can have as many  as
16,383 segments. Up to six segment descriptors can be held in processor registers at any
one time. Figure 2-4 shows the relationships between logical, linear, and physical
addresses.

2.10 PAGING UNIT

The paging unit allows access to data structures larger than the available memory space
by keeping them partly in memory and partly on disk. Paging divides the linear address
space into 4-Kbyte blocks called pages. Paging uses data structures in memory called page
tables for mapping a linear address to a physical address. Physical addresses are used by
the cache and/or put on the processor bus. The paging unit also identifies problems, such
as accesses to a page which is not resident in memory, and raises exceptions called page
faults. On a page fault, the operating system has a chance to bring the required page into
memory from disk. If necessary, it can free space in memory by sending some other page
out to disk. If paging is not enabled, the physical address is identical to the linear
address.

The paging unit includes a translation lookaside buffer (TLB) which stores the most
recently used 32 page table entries. The TLB data structures are shown in Figure 2-5.
The paging unit looks up linear addresses in the TLB. If the paging unit does not find a
linear address in the TLB, the unit generates requests to fill the TLB with the correct
physical address contained in a page table in memory. Only when the correct page table
entry is in the TLB does the bus cycle take place. When the paging unit maps a page in
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Figure 2-4. Segmentation and Paging Address Formats

the linear address space to a page in physical memory, it only maps the upper 20 bits of
the linear address. The lowest 12 bits of the physical address come unchanged from the
linear address.

Most programs access only a small number of pages during any short span of time. When
this is true, the pages stay in memory and the address translation information stays in the
TLB. In typical systems, 99% of the requests to access the page tables are satisfied by
the TLB. The TLB uses a pseudo-LRU algorithm, similar to the cache, as a content-
replacement strategy.
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Figure 2-5. Translation Lookaside Buffer

The TLB is flushed whenever the page directory base register (CR3) is loaded. Page
faults can occur during either a page directory read or a page table read. The cache can
be used to supply data for the TLB, although this may not be desirable when external
logic monitors TLB updates.

Unlike segmentation, paging is invisible to application programs and does not provide
the same kind of protection against programs altering data outside a restricted part of
memory. Paging is visible to the operating system, which uses it to satisfy application
program memory requirements. For more information on paging and segmentation, see
the i486™ Programmer’s Reference Manual.
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CHAPTER 3
PROCESSOR BUS

3.1 OVERVIEW OF THE BUS

The processor bus is the set of pinout signals on the i486™ processor chip. It is the bus
through which the processor communicates with other devices in the system. The signals
on the bus are classed by their functions, which include bus control and arbitration, bus
cycle definition and control, address and data, cache control, and floating-point error
control.

The features of the processor bus include:

o Non-multiplexed 32-bit address and data buses.
e Single-frequency (1x) clock.

o Bus hold operations.

e Bus locking and pseudo-locking operations.

o Burst transfers (up to 16 bytes).

o Cacheable transfers.

e Support for internal and external cache consistency.
o Floating-point error handling.

e Maskable and non-maskable interrupts.

o Support for 16- and 8-bit peripherals.

e Support for 1-Mbyte 8086 address wrap-around.

o Parity generation and checking.

The way in which system designs use the processor bus has an important effect on
performance. Typically, only a few devices are located on the bus—those which need fast
communication with the processor, share compatible signals, and observe the basic con-
straint on use of bus bandwidth: at least 50% of processor-bus bandwidth should be
reserved for the i486 processor. Devices placed on the bus might include a LAN copro-
cessor, an external (second-level) cache controller, or other similar device. In most sys-
tems, the processor bus interfaces with one or more system buses. This distributes bus
traffic across greater bus bandwidth and provides greater flexibility for system expansion.
The design of external buses need not conform to the signal set of the processor bus.
Chapter 8 describes general approaches to system design, Chapter 7 describes system
peripherals, and Chapter 9 describes interfaces to the MULTIBUS II backplane.

Write cycles dominate i486 processor bus activity. This is unlike most other systems in
which read cycles dominate bus activity and can keep the processor waiting. With the
486 processor’s internal cache, instruction prefetch unit, and support for burst transfers,
any memory subsystem capable of sustaining a rate of one data transfer per clock cycle
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can form the basis of a high-performance system. Most of the processor’s immediate
needs for instructions and data will then be satisfied quickly from the internal cache and
instruction prefetch queue, without having to perform cycles on the processor bus.

The processor bus can support multiple external caches. Cache consistency can be main-
tained between the processor’s internal cache, external caches, and main memory. Exter-
nal cache can be requested to write its contents back to memory, or it can be flushed;
individual cache lines in the internal cache can be selectively invalidated, or the entire
internal cache can be flushed.

The 386 processor used address pipelining on the processor bus to minimize processor
waiting time. In the i486 processor, burst reads into the on-chip cache are used, rather
than address pipelining on the bus, to achieve high performance. This, together with the
simpler 1x bus clock and more latitude in bus-cycle scheduling, results in simpler system
logic.

Two processor inputs dynamically control bus size for interfacing 8- and 16-bit devices to
the processor’s data bus. There are no restrictions on byte or word alignment within
doubleword boundaries, although data that is not aligned to doubleword boundaries
requires more than the minimum number of bus cycles to transfer. The bus supports an
emulation of the 8086 processor’s 1-Mbyte address wrap-around.

The sections below first summarize, and later elaborate on, the use of processor bus
signals, how the signals work together during bus cycles, and other matters relating to
the processor bus.

3.1.1 Bus Cycles

Bus cycles implement the processor’s interactions with the external system. The proces-
sor can drive two basic groups of bus cycles.

o Data Transfer Cycles:
Prefetch (read) instructions from memory.
Read data from memory.
Read data from I/O.
Write data to memory.
Write data to I/O.

e Other Cycles:
Interrupt acknowledgement.
Halt (a special bus cycle).
Shutdown (a special bus cycle).
Cache flush (a special bus cycle).
Cache write-back and flush (a special bus cycle).

Some of the cycles driven by the processor are, or can be, locked or pseudo-locked.
External hardware can exercise a bus hold operation and drive its own cycles on the
processor bus, including cache invalidation cycles into the processor.
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From the viewpoint of external hardware, data can be transferred as doublewords,
words, or bytes, depending on the bus size specified. From the processor’s viewpoint, all
transfers use the 32-bit data bus but some transfers have only certain bytes enabled. Bus
cycles which transfer data are of two basic types:

e Non-Burst Cycles—These cycles transfer up to four bytes at a maximum rate of two
clocks per data item (doubleword, word, or byte). When a single data item is trans-
ferred, it is a single-transfer cycle. When these single cycles are repeated in a series,
they form a multiple-cycle sequence.

e Burst Cycles—The fastest way to transfer more than one item of data is with a burst
cycle. These cycles transfer up to 16 bytes at a rate of one data item per clock cycle.
They are designed for cacheable reads (each internal cache line holds 16 bytes) but
they can also be used for long floating-point reads, segment table descriptor reads,
and other types of transfers.

Transfers internal to the processor, such as reads from the internal cache, do not appear
on the processor bus. However, writes to the cache always appear on the bus because the
cache uses a write-through policy: all writes go to memory and they will only go to the
internal cache if the addressed data is already stored in the cache.

The remaining types of bus cycles, aside from the data transfers discussed above, include
interrupt acknowledgement and four special bus cycles. The details of interrupt acknowl-
edgement cycles are given in Section 3.3.2. The four special bus cycles are described in
Sections 3.3.3 (halt and shutdown), 3.4.4 (cache flush cycle), and 3.4.5 (cache write-back
and flush cycle).

3.1.2 Overview of Signals and Control Cycles

Table 3-1 lists the signals on the processor bus. Tables 3-2 and 3-3 provide additional
perspectives on the signals. Table 3-3 shows that certain input signals have internal
pullup or pulldown resistors. These resistors will cause current to flow in these inputs,
but the resistors should not be relied upon as the sole connection for an input. All
unused inputs should be connected to an external pullup or pulldown.

Some signals on the processor bus have a dual use, one for normal operations and
another for device testing; only their normal function is described here. The power
supply pins are not included. The i486™ Microprocessor Data Sheet contains full details
on the timing and electrical characteristics of all signals. This data sheet is the only
authoritative source for timing and electrical information. The classification of signals in
the data sheet differs somewhat from the classification shown in Figure 3-1— the signals,
of course, are the same, but the viewpoint each reader may have of their functions can
differ.

The text immediately following the tables summarizes the function of each signal. It also
includes descriptions of the five bus cycles (halt, shutdown, cache flush, cache write-
back, and interrupt acknowledge) that perform control functions very much like signals.
The data transfer cycles, for which the bus fundamentally exists, are then described in
Section 3.2.

3-3



H ®
intel PROCESSOR BUS

Table 3-1. Processor Bus Signals

Class Signal Type Description
Address and A4-A31 1/O Address
Data Buses A2-A3 o} Address
A20M# | Address-bit 20 mask
D0-D31 1/O Data
BEO#-BE3# 0 Byte-enable (also Special Bus Cycle selection)
BS8# | 8-bit data bus size )
BS16# | 16-bit data bus size
DP0-DP3 1/0 Data parity
PCHK# o) Parity error
Cycle Definition ADS# (0] Address status
and Control M/1I0# (e} Memory or 1/O
D/C# 0} Data or control
W/R# 0] Write or read
RDY# | Non-burst data ready
BRDY# | Burst data ready
BLAST# 0o Last burst cycle
KEN# | Internal-cache enable
Bus Control CLK | Clock
RESET | Reset
NMI | Non-maskable interrupt
INTR | Maskable interrupt
BREQ o} Bus request
HOLD | Bus hold request
HLDA# 0] Bus hold acknowledgement
BOFF# | Bus backoff
LOCK# 0] Bus lock
PLOCK# (o] Bus pseudo-lock
Cache Control PCD (0] Page cache disable (internal and external)
PWT o} Page cache write-through or write-back (external)
EADS# | Cache invalidation (internal)
AHOLD | Address-bus hold (internal)
FLUSH# | Cache flush (internal)
Floating-Point FERR# o Floating-point error
Error Control IGNNE# | Ignore floating-point error

3.1.2.1 ADDRESS AND DATA BUSES

The address and data buses are the paths on which bus cycles implement data transfers.
The signals include:

o Address Bus—The A2-A31 address signals (Figure 3-1) are a mixture of bidirectional
and output signals. A4-A31 are bidirectional. A2-A3 are output only. As outputs, the
A2-A31 signals carry the 30-bit physical address of a doubleword in the memory or
I/O space. As inputs, A4-A31 specify addresses in the internal cache to be invalidated
during a cache invalidation cycle controlled by external hardware. The A0-Al bits
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Table 3-2. Output and Bidirectional Signals

Signal Type When Floated
A4-A31 1/0 Bus Hold and Address Hold
A2-A3 (0] Bus Hold and Address Hold
D0-D31 1/0 Bus Hold
BEO#-BE3# 0 Bus Hold
DPO-DP3 /0 Bus Hold
ADS# (0] Bus Hold
M/10# 0 Bus Hold
D/C# o] Bus Hold
W/R# (0] Bus Hold
BLAST# (0] Bus Hold
LOCK# 0 Bus Hold
PLOCK# (6] Bus Hold
PCD (0] Bus Hold
PWT (6] Bus Hold
PCHK# (0] (never)

BREQ (0] (never)
HLDA (6] (never)
FERR# (0] (never)

only exist internally; they generate the four byte-enable signals, BEO#-BE3#,
described below. The processor is a little-endian machine; the least significant byte of
a doubleword is the lowest-addressed byte of that doubleword, while the most signif-
icant byte is the highest-addressed byte of the doubleword.

Address-Bit 20 Mask—The A20M# input emulates the address wrap-around which
occurs at 1 Mbyte on the 8086 processor. The input causes the 486 processor to mask
(clear to zero) physical address bit 20 when performing an internal-cache lookup and
when writing to memory on the processor bus. During normal operation, the signal
should be asserted only when the processor is in Real-Address Mode, which emulates
the 8086 processor. During reset, A20M# plays a role in testability, as explained in
the data sheet.

Data Bus—The DO0-D31 bidirectional signals (Figure 3-2) can carry a doubleword of
data. D0-D7 is the least significant byte; D24-D31 is the most significant byte. The
valid bytes on the 32-bit bus are specified by the byte-enable signals, BEO#-BE3#.
The parity bit for each byte is specified by the DP0-DP3 signals.

Byte Enables — The BE0#-BE3# outputs (Figure 3-2) indicate which bytes on the data
bus are valid. The byte-enable signals should be ignored for the first transfer of
cacheable cycles. In addition to their byte-enable functions for the data bus, these
signals perform two additional functions: they can be decoded to generate A0, Al,
and BHE# signals used in addressing 16- and 8-bit systems (see Section 3.2.3), and
they encode special bus cycles (see Section 3.3.3).

Bus Size—The BS8# and BS16# inputs (together with the address of data being
accessed) control the sequence in which the byte-enable signals are driven. BS8# and
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Table 3-3. Input Signals

Signal I!lnetseirsntzlr Timing with Respect to CLK

CLK - -

NMI - Asynchronous
IGNNE# Pullup Asynchronous
A20M# Pullup Synchronous
BS8# Pullup Synchronous
BS16# Pullup Synchronous
RDY# - Synchronous
BRDY# Pullup Synchronous
KEN# Pullup Synchronous
RESET - Synchronous
INTR - Synchronous
HOLD — Synchronous
BOFF# Pullup Synchronous
EADS# Pullup Synchronous
AHOLD Pulldown Synchronous
FLUSH# Pullup Synchronous

BS16# cause the processor to run multiple bus cycles to satisfy data transfers for 8-
and 16-bit devices. Doubleword transfers are converted to the appropriate number of
word or byte transfers. BS8# and BS16# must be driven for each data transfer.

e Data Parity—The DP0-DP3 bidirectional signals (Figure 3-2) carry the parity bit of
each byte on D0-D31. Even parity is used. To use parity checking, external logic must
latch these signals in the write direction and provide parity inputs in the read direc-
tion. Only enabled bytes are checked for parity.

e Parity Check—The PCHK# output indicates a parity error in one or more of the four
bytes sampled during the last clock of a read transfer. Only enabled bytes are checked
for parity. The processor continues with normal operations after such errors. External
hardware must take any action required.

3.1.2.2 CYCLE DEFINITION AND CONTROL

The cycle definition and control signals specify the type and direction of cycles (as shown
in Table 3-4), the points in time at which data becomes valid or invalid, and the cache-
ability of the cycle. The signals in this class include:

o Address Status —The ADS# output indicates that a valid address (or addresses) and a
valid cycle definition are being driven on the processor bus. The assertion of this
signal marks the beginning of a bus cycle. In non-burst bus cycles, each address is
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Figure 3-1. Address Signals

marked by a separate assertion of ADS# and a single data transfer. In burst bus
cycles, one assertion of ADS# marks the beginning of a sequence of addresses and
corresponding data transfers.

Memory or I/0 —The M/1IO# output differentiates memory space from I/O space. It is
used for bus cycle definition. For halt and shutdown cycles, the encoding of this signal
ic ravarcad fram that nnced in tha 206 nraragcenr

10 1VvVYLVlIOoLU 11VUlll uiat uovu 111 wuiv Vov PIU\/UODUI'

Data or Control —The D/C# output differentiates data cycles from all other cycles. It
is used for bus cycle definition.

Write or Read — The W/R# output indicates whether the cycle is a write or read. It is
used for bus cycle definition.

Ready (non-burst) —The RDY# input indicates that an external device has presented
valid data on the data bus, or that the external device has accepted the processor’s
data. Slow devices can withhold RDY#, adding wait states until data is stable, so that
transfers can be made at a sustainable pace. RDY # always terminates the current bus
cycle, even if the signal is asserted in the middle of a burst cycle.

Burst Ready —The BRDY# input is used instead of RDY# during a burst transfer.
The signal is analogous to RDY#, although it does not terminate a burst cycle in
progress. The processor responds to BRDY# by expecting the next clock cycle to be
another data transfer. A maximum of 16 bytes can be transferred during the burst, at
the rate of one doubleword, word or byte per clock. The assertion of BLAST# ends
the burst.
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Figure 3-2. Data Signals
Table 3-4. Bus Cycle Definitions
M/10# D/C# W/R# Transfer Type
0 0 0 Interrupt acknowledge
0 0 1 Special bus cycles (see also BEO#-BE3#)
0 1 0 Read data from |/O
0 1 1 Write data to 1/0
i 0 0 Prefetch (read) instructions from memory
1 0 1 (reserved) .
1 1 0 Read data from memory
1 1 1 Write data to memory

o Burst Last—The BLAST# output indicates the last transfer of any data transfer cycle
(burst or non-burst), from the processor’s viewpoint. When BLAST# is asserted, the
next BRDY# returned to the processor has the same effect as a RDY# input. If
BLAST# is de-asserted, additional transfers are needed to complete the cycle. These
additional transfers may be made in a burst cycle, if the external memory is capable of
bursting, or they may be made in a multiple-cycle sequence.

o Cache Enable—The KEN# input enables the internal cache. Almost any read cycle,
whether non-burst or burst, can be cached. When KEN# is asserted properly, the
current read cycle will be transformed into a cache-line fill and 16 bytes will be read.
The processor will run as many contiguous bus cycles as are required to fill the
16-byte cache line. KEN# is ignored during write cycles; data written by the proces-
sor will only be put in the cache if data from that address is currently in the cache.
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Section 3.2 describes data transfer cycles. Special bus cycles are described in
Section 3.3.3.

3.1.2.3 BUS CONTROL

Bus control signals, interrupt acknowledgement, and special bus cycles affect basic tim-
ing of, access to, and emergency actions for the processor bus. In the following list, these
signals and cycles are grouped under two headings: (1) those which apply to all systems,
and (2) those which apply only to multiple bus-master systems.

The signals and cycles used in all systems include:

Clock— A single CLK input controls the timing of the processor and the bus. All
timing parameters are specified with respect to the rising edge of this clock, which
uses TTL logic levels.

Reset — The RESET input forces the processor to initialize itself to a known state. The
reset can initialize all registers or only non-floating-point registers, and it can run
various tests, depending on the assertion of other signals during reset.

Maskable Interrupt —The INTR input, if it is not masked by software, interrupts the
processor and causes it to acknowledge the interrupt by reading an interrupt vector
(number) from an external interrupt controller.

Interrupt Acknowledge Cycle —The processor does not have a separate output for
acknowledgement of maskable interrupts, as do earlier Intel 8086-family processors.
Instead, the processor executes a unique interrupt-acknowledgement bus cycle that
reads an interrupt vector from external hardware. This is described in Section 3.3.2.

Non-Maskable Interrupt —The NMI input interrupts the processor and causes it to
execute a specific interrupt service routine, without reading a vector from external
logic. These interrupts indicate conditions which require immediate attention, such as
loss of power.

Halt Cycle — This special bus cycle indicates that the processor has suspended its oper-
ations. The cycle is generated by the execution of a HLT instruction.

Shutdown Cycle —This special bus cycle indicates that the processor has terminated all
of its operations. The cycle is generated by multiple protection exceptions.

The signals used in multiple bus-master systems include:

Bus Request —The BREQ output indicates that the processor needs access to the bus,
or that it is currently using the bus. The signal is used by external logic to arbitrate
bus access among multiple bus masters. BREQ is always generated when the proces-
sor has a cycle pending, whether or not the processor is currently driving the bus. The
signal is never floated. Thus, BREQ can be asserted during bus hold (HOLD), bus
backoff (BOFF#), or address hold (AHOLD).

Bus Hold —The HOLD input causes the processor to release the bus. It is used by
other bus masters to gain access to the bus. In response, the processor floats most of
its signals after completing its current bus cycle (or sequence of locked cycles) and
asserts HLDA. Bus hold is distinct from address hold, which is described later. Bus
hold will be recognized during a reset.
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o Bus-Hold Acknowledge—The HLDA output indicates that the processor has floated
most of its bus signals in response to a HOLD input. During bus hold, the processor
continues execution internally; the internal cache and instruction prefetch unit will
satisfy most of its bus requests. If the processor needs the bus, it will assert BREQ.

o Bus Lock—The LOCK# output allows the processor to complete multiple bus cycles
without interruption via the HOLD input. The signal is generated by read-modify-
write operations, interrupt acknowledge cycles, and segment descriptor loads. Among
other things, it is asserted during semaphor updates. Locked read cycles are not
cacheable. In systems with external cache, locked cycles should always cause a system-
bus cycle. During locked cycles, the processor will not recognize a HOLD request, but
will recognize a BOFF# or AHOLD request.

o Bus Pseudo-Lock —The PLOCK# output, like LOCK#, allows the processor to com-
plete multiple bus cycles without interruption via the HOLD input. PLOCK# is
asserted for all multiple-cycle sequences in which the transferred data is aligned to
quadword boundaries. This includes transfers of 64-bit floating-point operands and
cache line fills. BLAST# and PLOCK# have a complementary relationship —when
BLAST# is de-asserted and valid, PLOCK# is asserted—except during the first
transfer of a 64-bit write. During pseudo-locked cycles, the processor will not recog-
nize a HOLD request, but will recognize a BOFF# or AHOLD request.

o Bus Backoff—The BOFF# input indicates that another bus master needs to complete
a bus cycle in order for the processor’s current cycle to complete. It is used to avoid a
“deadly embrace” where neither the processor nor the other bus master can complete
its operation, since each is waiting for some action by the other. BOFF# is recognized
at any time. The processor’s response to BOFF# is similar to that of HOLD, but
more immediate; when BOFF# is asserted, the bus is always released in the next
clock and no acknowledgment is given. When BOFF# is de-asserted, the processor
will reliably restart the same bus cycle that was aborted. If RDY# or BRDY# is
asserted simultaneously with BOFF#, only BOFF# will be recognized.

Section 3.3 describes bus control in detail.

3.1.2.4 CACHE CONTROL

Cacheable reads are stored in the processor’s internal 8-Kbyte cache when the KEN#
input is asserted and other conditions are met, as described in Section 3.2. Cache control
maintains consistency between the internal cache, main memory, and any external cache
during cycles that update any of the three.

Each 4-Kbyte page of memory locations can have its cacheability and write-through or
write-back policy controlled on a cycle-by-cycle basis. The two outputs which implement
page-based controls are: '

o Page Cache Disable—The PCD output indicates whether the current page is cache-
able. The information is taken from the page table entries, used by the internal cache,
and can be used to control external caching.

o Page Write-Through (or Write-Back)—The PWT output, when asserted, applies a
write-through caching policy for the current page (in which updates to external cache
will immediately be written through to memory). When de-asserted, the signal allows
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the possibility of a write-back caching policy (in which updates to cache will written
back to memory only when specifically requested). This signal, also derived from the
page table entries, is only useful to external cache; internal cache is always
write-through.

Three inputs cause partial or complete invalidations of the internal cache:

Address Hold —The AHOLD input causes the processor to float its address bus in the
next clock cycle. This allows an external device to drive an address into the processor
for internal cache-line invalidation. The address is strobed by the EADS# input.
Only the address bus is floated: the remainder of the bus remains active. No address-
hold acknowledgement is given. During reset, AHOLD plays a role in testability, as
explained in the data sheet.

Internal Cache-Line Invalidation —The EADS# input indicates that an address for a
16-byte cache line has been driven into the processor and is valid. This causes imme-
diate invalidation of the cache line at that address, if the address matches an area
that is cached. EADS# is used together with AHOLD. In most cases, the processor
can accept one invalidation every clock cycle. Multiple invalidations can occur in a
single address hold operation.

Internal Cache Flush—The FLUSH# input forces the processor to flush the entire
contents of its internal cache. Since the internal cache is write-through, the cache
contents will already have been written to memory. During reset, FLUSH# plays a
role in testability, as explained in the data sheet.

Two special bus cycles control invalidation and write-back for both internal and external
cache:

Cache Flush Cycle—This special bus cycle does two things: (1) invalidates the entire
contents of the internal cache, and (2) requests an external cache to invalidate its
entire contents. External cache should not write its contents back to memory before
the flush. The cycle is initiated by the INVD instruction.

Cache Write-Back and Flush Cycle — This special bus cycle does three things: (1) inval-
idates the entire contents of the internal cache, (2) requests an external cache to
write its entire valid contents back to memory, and (3) requests the external cache to
invalidate its entire contents after the write-back. The write-back function is not used
with internal cache, which is write-through. The cycle is initiated by the WBINVD
instruction.

Section 3.2 describes cacheable transfers. Section 3.3.3 describes special bus cycles. Sec-
tion 3.4 describes cache control.

3.1.2.,5 FLOATING-POINT ERROR CONTROL

Two signals are used to maintain compatibility with DOS floating-point error reporting.
One signal alerts the system to errors within the processor’s floating-point unit and the
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other signal tells the processor what to do if errors occur. The mechanism is compatible
with floating-point error control in other Intel 8086-family processors and with DOS
environments:

e Floating-Point Error—The FERR# output indicates that an unmasked floating-point
error has occurred. The signal is similar to the ERROR# output on the 287 and 387
coprocessors. For DOS-compatible error reporting, the signal is routed back to the
processor’s INTR input.

e Ignore Floating-Point Errors—The IGNNE# input directs the processor to ignore
floating-point errors and continue execution. If IGNNE# is de-asserted when a
floating-point error is detected, the processor will either stop and wait for an inter-
rupt, or it will jump to the floating-point interrupt location (vector 16), depending on
the state of a control register bit.

Section 3.5 gives more detail on this mechanism, including a description of the software
bit and a design example for DOS-compatible error reporting.

3.1.3 Timing and Clock Generation

The 1486 processor uses a single-frequency (1x) clock input. All operations across the bus
(except for the two asynchronous inputs, NMI and IGNNE#) are timed with respect to
the rising edge of the CLK input.

There are two major advantages to using a 1x clock, as opposed to the 2x clock used in
the 386 processor. First, the 1x clock simplifies system design by cutting in half the clock
frequency required by external devices. Second, it keeps RF emission to a minimum and
simplifies clock generation. A 25 MHz clock can be used to achieve high performance.

3.1.3.1 BUS STATE DIAGRAM

The bus can pass through five states during the operations described earlier in this
chapter. A transition between states is made in every clock cycle, even when the transi-
tion is back to the immediately preceding state. The states are listed in Table 3-5. A state
diagram is given in Figure 3-3.

When no bus cycle is executing, or when HOLD or BOFF# is asserted, the bus contin-
uously loops in the Ti idle state. The bus passes to the T1 state when a new bus cycle is
started and there is no bus hold or backoff. The bus passes to T2 if BOFF# is not
asserted during the single T1 clock. The bus loops in T2 until RDY#, or the final
BRDY# of a burst cycle, or BOFF# is asserted.

The bus returns to the T1 state if BRDY# or RDY# is received for a non-burst transfer
or if the final BRDY# or RDY# is received for the last transfer of a burst cycle,
provided that a new bus cycle is pending and HOLD, AHOLD and BOFF# are all
de-asserted. If HOLD or AHOLD is asserted, or if no new bus cycle is pending, while
BOFF# is de-asserted, the bus returns to the Ti idle state.
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Table 3-5. Bus States

State Description

Ti Bus is idle. Address and status signals may be driven to undefined values,
or the bus may be floated to a high-impedance state.

T First clock cycle of a bus cycle. Valid address and status are driven and
ADS# is asserted.

T2 Second and subsequent clock cycles of a bus cycle. Data is driven if the
cycle is a write, or data is expected if the cycle is a read. RDY# and
BRDY# are sampled.

Tib First clock cycle of a restarted bus cycle. Valid address and status are
driven and ADS# is asserted. Externally, this state cannot be distinguished
from T1.

Tb Second and subsequent clock cycles of an aborted bus cycle.

If BOFF# is asserted while the bus is in T1 or T2, the bus goes to Tb, the backoff state.
It remains in that state while HOLD, AHOLD or BOFF# is asserted. When HOLD,
AHOLD and BOFF# are all de-asserted, the bus proceeds to T1b, ready to restart the
cycle which was aborted. The bus proceeds to T2 on the next clock if BOFF# remains
de-asserted. Otherwise, the bus goes back to Tb.

Table 3-6 shows the six conditions under which the processor will float its bus signals,
including its address bus.

3.1.3.2 CLOCK TIMING AND GENERATION

The processor uses only a TTL-level CLK input for all internal timing. The CLK input is
used at its undivided rate (1x). The processor can operate over a wide frequency range,
but the frequency of CLK cannot change rapidly while RESET is inactive. See the i486
Microprocessor Data Sheet for details on the clock waveform.

3.1.3.3 BASIC READ TIMING

Non-burst data transfers take at least two clock cycles. During the first clock, the address
of the source or destination of the data is placed on the address signals and the address
status signal ADS# is asserted. At the same time, the transfer type and direction are
defined by the M/IO#, D/C# and W/R# signals. In a data read from memory, for
example, M/IO# is high, D/C# is high, and W/R# is low. In the second clock, data is
transferred into the processor at the end of the cycle if the RDY# input is asserted.
Otherwise, the processor waits for RDY# to be asserted.
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Figure 3-3. Processor-Bus States
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Table 3-6. Conditions for Floating the Processor Bus

When...

The processor...

HOLD is asserted during the Ti (idle) state...

Floats the bus and asserts HLDA in the next
clock.

HOLD is asserted in the Tb (backed off) state...

Stays in Tb. The bus is not floated.

HOLD is asserted, RDY# is asserted, and
BOFF# is de-asserted in the T2 state...

Floats the bus and asserts HLDA in the next
clock.

HOLD is asserted, BRDY# is asserted, and
BOFF# is de-asserted in the T2 state either for

Floats the bus and asserts HLDA in the next
clock.

the last transfer of a burst or a non-burst
transfer...

BOFF# is asserted Floats the bus in the next clock, without assert-

ing HLDA.

AHOLD is asserted. Floats A2-A31 in the next clock.

3.1.4 NMemory and I/O on the Bus

The instruction set supports an address space for memory that is separate from the
address space for I/O 2ports, as in other Intel 8086-family processors. Up to four
gi%abytes of memory (2** bytes, 00000000H-FFFFFFFFH) and up to 64 kilobytes of I/O
(2'° bytes, 00000000H-0000FFFFH) can be addressed. Both memory and I/O address
space has hardware support for protection and multi-tasking.

3.1.4.1 DATA BUS STRUCTURE

To the programmer, memory locations and I/O ports are accessible as 8-bit bytes, 16-bit
words, 32-bit doublewords, and a variety of other data structures. A word is any two
consecutively addressed bytes. A doubleword is any four consecutively addressed bytes.
However, in hardware, memory and I/O on the data bus are viewed as a sequence of
doublewords (2*° 32-bit memory locations and 2'* 32-bit 1/O ports, maximum). From the
processor’s viewpoint, each doubleword location has four individually addressable bytes
at consecutive memory addresses. Each 32-bit memory location starts at a physical
address that is a multiple of four.

The least significant byte of a doubleword is transferred on bits D0-D7 of the data bus;
the most significant byte of the doubleword is transferred on bits D24-D31. Also, the
least significant byte of a doubleword is the lowest addressed byte of that doubleword,
while the most significant byte is the highest addressed byte, as illustrated in Figure 3-4.

Memory and I/O address space should be implemented as four sections in hardware.
Each section connects to a byte on the data bus (D0-D7, D8-D15, D16-D23, and D24-
D31). When the processor reads a doubleword, it accesses one byte from each section.
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Figure 3-4. Data Bus Structure

A2-A31 are the most significant bits of the physical address; these signals address dou-
blewords of memory. The two least significant bits of the physical address are used
internally to activate the appropriate byte-enable outputs (BEO#-BE3#).

The manner in which bytes, words and doublewords are addressed is shown in
Figure 3-5. In implementing four sections of memory, the BEO#-BE3# outputs are used
as chip selects for the sections, with each section passing data on one byte of the proces-
sor’s data bus.

3.1.4.2 DATA ALIGNMENT

Software normally considers data to be aligned if its address is an even multiple of its
data width, in bytes. However, the processor hardware views alignment less strictly.
Transfers on the processor’s full 32-bit data bus are aligned if their data does not overlap
doubleword boundaries. A word is aligned if it can be read from one of three possible
positions within the doubleword space, as shown in Table 3-7 and Figure 3-6.

Data alignment is an important performance consideration: transfers of aligned words
and doublewords take one bus cycle; transfers of unaligned words and doublewords take
two bus cycles.
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Figure 3-5. Addressing Bytes, Words and Doublewords

Table 3-7. Possible Transfers in a Single 32-Bit Bus Cycle

Bytes Transferred Bytes Enabled
4 bytes 3-2-1-0
3 bytes 3-2-1

2-1-0

2 bytes 3-2
21

1-0
1 byte 3
2
1
0

An aligned doubleword has an address which is clear in its lowest two bits. An aligned
word can have any address except one which is set in both of its lowest two bits. If the
addressed word is in the middle of a doubleword boundary (bytes 1 and 2 enabled, but
not bytes 0 and 3), the word is aligned from the hardware viewpoint—it will be trans-
ferred in a single bus cycle on the full 32-bit bus—even though it will generate an
alignment check fault in software.

Figure 3-7 shows an example of reading a misaligned doubleword at memory location
n+2. The operation takes two bus cycles instead of one. The first cycle accesses the
upper word of the doubleword at address n+4 and n+5, with BE1# and BEO#
asserted. The second cycle accesses the lower word at address n+2 and n+3, with
BE3# and BE2# asserted.

For maximum software compatibility with hardware environments, programmers should
keep word data aligned to two-byte boundaries, doubleword data aligned to four-byte
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Figure 3-6. Data Alignment on 32-Bit Data Bus

boundaries, and quadword data (such as floating-point operands and segment-table
descriptors) aligned to 8-byte boundaries. Quadword alignment is useful because the
processor can do a quadword-aligned read from its internal cache in one clock cycle.
Quadword alignment also anticipates development of future Intel processors which may
have 64-bit data buses.

A software mechanism is provided for flagging misaligned data. The mechanism checks
for word data for word operands, doubleword data for doubleword operands, and quad-
word data for quadword operands. It will execute interrupt 17 if:

o The alignment check (AC) bit in the machine status register (CRO) is set (one).
o The alignment check (AC) bit is not masked.

o The data being checked is for user level 3.

As mentioned above, aligned words which have bytes 1 and 2 enabled (but not bytes 0
and 3) will generate an alignment check fault but will nevertheless be transferred in a
single bus cycle.
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Figure 3-7. Misaligned Doubleword Transfer

3.1.4.3 INVALID INSTRUCTION PRE-FETCHING

The processor may perform instruction prefetching to memory addresses not anticipated
by programmers. For example, prefetching may access addresses beyond the end of the
program in memory. The prefetcher will never read past the end of an instruction seg-
ment or access a page which is not present. An exception is generated when attempting
to execute a subsequent instruction which would violate the segment limit or access a
page which is not present.
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A problem occurs only when prefetching goes beyond the end of physical memory with-
out a segment-limit or page exception. This can happen in Real-mode systems with less
than 1 Mbyte of memory. External hardware may respond to such an access with invalid
data, no Ready, or a malfunction. For example, if memory ends at address OFFFFH, a
parity error or time-out may be asserted for access to a higher address. To keep
prefetching from going to addresses beyond OFFFFH, the last byte of the last instruction
should be at address OFFEEH. This places one free byte followed by one free, aligned
16-byte block between executable instructions and the end of valid memory. If a program
will never execute beyond memory but prefetching may occur beyond memory, make
sure that the prefetch will be terminated by a Ready and that correct parity is supplied,
if required.

3.1.4.4 1/0 PORT STRUCTURE

The processor supports addressing of 8-, 16-, and 32-bit I/O devices in either of two
ways: I/O-mapped devices are addressed through the separate I/O address space, with
I/O instructions, and supported by a special hardware protection mechanism; memory-
mapped devices are addressed through the memory space, where I/O ports appear as
memory addresses, the general-purpose instruction set is used to access ports, and pro-
tection is provided through memory segmentation and paging.

I/O-mapped systems are mapped into the the 64-Kbyte I/O address space (a range of 0
to 65,535). Hardware must decode the M/IO# and D/C# outputs to generate chip select
signals for the I/O ports, as shown earlier in Table 3-4. Ports are addressed indirectly,
using the DX register, or directly, using a byte encoded in the instruction. Only
addresses in the range 0 to 255 can be accessed directly. If the number of I/O ports is
small, all ports should be placed in this low-end range for simplicity and speed. I/O-
mapped systems have the simplest address decode schemes; only two signals need to be
decoded for chip selects. Chapter 7 describes 1/O interfacing in detail.

In the memory-mapped 1/O approach, a more complex address coding scheme is needed
because of the much larger address space —4-gigabytes of physical memory. As long as
the I/O devices respond like memory devices, this method can be used. I/O instructions
and data structures cannot be used in memory-mapped I/O, but all other general instruc-
tions can be used. Memory segmentation and paging provides protection and multi-
tasking support for memory-mapped I/O ports.

Like words in memory, 16-bit I/O ports should be aligned to even addresses so that all
words can be transferred in a single bus cycle. Like doublewords in memory, 32-bit ports
should be aligned to addresses which are multiples of four. The processor supports data
transfers to unaligned ports, but an extra bus cycle must be used. A port which crosses a
doubleword boundary, whether it is I/O mapped or memory mapped, is first accessed in
its high doubleword.

I/O hardware should not rely on the byte order the processor uses to access memory,
except for the order specified for burst transfers. Intel reserves the right to change the
byte order of non-burst bus cycles.
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PCHK# is generated for both memory and I/O cycles. If I/O ports do not return parity
on reads, the PCHK# output may need to be masked during I/O access if irrelevant
interrupts are to be avoided. This is true whether I/O-mapped or memory-mapped 1/O is
used. The PCHK# signal is masked internally to prevent parity errors from being
reported for interrupt-acknowledge and special bus cycles. The 1486 processor handles
I/O cycles in a special way with regard to the write buffers. See Chapter 7 for details.

3.1.4.5 16-BIT AND 8-BIT PERIPHERALS

The BS16# and BS8# inputs allow the external system to specify, on a cycle-by-cycle
basis, whether an addressed peripheral can only supply 8 or 16 bits of data on the
processor bus. If the peripheral cannot return all the bytes requested, the processor will
run enough bus cycles to complete the transfer. Data must be presented across the
processor’s entire 32-bit bus width, even though this cannot be done simultaneously.
Chapter 7 describes the logic needed to connect the peripheral’s data and address buses
to the processor’s 32-bit data and address buses.

If 8- or 16-bit memory devices support cacheable transfers to the processor, external
logic must detect the first transfer of a cacheable cycle and properly prioritize the bytes
placed on the processor’s data bus during this first transfer. Section 3.2.3.4 and
Table 3-11, describe this byte ordering during cacheable cycles. Chapter 6 covers mem-
ory interfacing in detail.

3.2 DATA TRANSFERS

Data transfers, also called data cycles, move instructions, operands, and other data across
the processor bus. Each item of data (doubleword, word, or byte) is identified by an
address and by the byte-enable signals.

Bus cycles control data transfers through a series of signal changes on the bus. The
beginning of data-transfer bus cycles is marked by the assertion of the address-status
(ADS#) output. In the timing diagrams for this manual, the beginning and end of bus
cycle are illustrated with heavy, vertical, dashed lines.

A single bus cycle may involve more than one data transfer; for example, burst cycles
transfer several items of data in a single cycle. The converse is also true for 8- or 16-bit
bus sizes: one 32-bit data transfer involves multiple bus cycles.

Data transfers can be made in the following ways:

o Non-Burst Cycles.
Non-cacheable memory or I/O reads or writes.
Cacheable memory reads (including instruction prefetching).

o Burst Cycles.
Non-cacheable memory or 1/O reads or (for small bus sizes) writes.
Cacheable memory reads (including instruction prefetching).
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Non-burst cycles that transfer a single data item are called single-transfer cycles. A contin-
uous series of non-burst single-transfer cycles is called a multiple-cycle sequence. Cache-
able cycles provide the processor with internal copies of recently read instructions,
operands, and other data. When the processor generates a read request, it first checks its
cache for the data being addressed. If data at that address had previously been read into
the cache and is still valid (a cache hit), no bus cycle is required. If such data is not
present or not valid (a cache miss), the processor will read from memory. During mem-
ory reads which result from a cache miss, the processor transfers 16 bytes into the cache
(a cache line fill), if caching is enabled. Only memory reads are convertible into cache
line fills; write data will only be put into the cache if data at the address of the write is
currently cached.

Burst cycles are the fastest way to transfer more than one item of data. They are the
most important type of cycle for high-performance systems. Burst cycles transfer up to 16
bytes of contiguous, aligned data at a maximum rate of one data item per clock cycle.
They are designed primarily for 16-byte cache line fills, but they can also be used for
non-cacheable transfers involving fewer bytes.

Table 3-8 shows the restrictions on burst cycles and cacheable cycles.

3.2.1 Non-Burst Cycles

A non-burst transfer that passes a single data item is called a single-transfer cycle. The
minimum single-transfer read or write cycle takes two clocks. It is called a “2-2” bus
cycle, because read cycles and write cycles each take two clocks. If external logic is
unable to respond within the second clock, a 2-2 bus cycle can be converted into a “3-3”
cycle, in which read cycles and write cycles each take three clocks. A continuous series of
non-burst single-transfer cycles is called a multiple-cycle sequence. Of the non-burst
cycles, only multiple-cycle sequences can be cacheable. Each of these non-burst cycles is
described in the subsections below.

3.2.1.1 NON-CACHEABLE 2-2 CYCLES

Figure 3-8 shows the timing for 2-2 non-cacheable single-transfer cycles—the fastest
non-burst bus cycle that the processor supports. The cycle begins with the appearance of
a stable address and the processor’s assertion of ADS# at the rising edge of the first

Table 3-8. Restrictions on Burst Cycles and Cacheable Cycles

Cycle Type Restrictions

Burst Cycles Only memory or /O reads that require more than one data transfer can
be bursted. Instruction prefetches are burstable. Burst writes can only
be done on 16- or 8-bit data buses, for a maximum of 4 bytes.

Cacheable Cycles Only memory reads (including instruction prefetches) can be cached.
Locked reads, 1/0-mapped reads, and interrupt acknowledge reads
cannot be cached.
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Figure 3-8. Non-Burst, Non-Cacheable 2-2 Cycle

clock. ADS# indicates that the bus-cycle definition and address signals are available.
The first clock is used only to pass the address and bus cycle definition. It allows time for
external devices to decode and prepare data in the case of a read cycle.

During the second clock, ADS# is de-asserted, but the address bus and other bus cycle
definition signals are held stable. To complete the transfer, external logic must assert
RDY# just before the end of the second clock. The processor samples RDY# on the
rising edge of the third clock. RDY# indicates either that the external device is able to
receive data during a write or return stable data during a read. Setup and hold times are
specified in the i486™ Microprocessor Data Sheet.

RDY# is ignored at the end of the bus cycle’s first clock. During the second clock, the
assertion of RDY# does more than indicate the acceptance or validity of data; it also
enables a subsequent ADS# signal, if more data transfers are needed. BRDY # (used to
invoke a burst transfer) may be in any state throughout the bus cycle, as long as RDY#
is asserted properly. RDY# always takes precedence over BRDY# when the two signals
are sampled on the rising edge of the second clock. If the external system is unable to
respond in time, it must keep RDY# (and BRDY#) de-asserted until a valid response is
possible. The next section, on 3-3 cycles, discusses the details of adding these wait states.

The processor asserts BLAST# during the final (second) clock of the bus cycle, as
shown in Figure 3-8. This indicates that the transfer is complete after a single cycle.
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While BLAST# is designed primarily for use with burst cycles (explained later), the
processor asserts the signal in all bus cycles to indicate when the processor expects the
last transfer of a cycle to occur.

Four alternating read/write cycles are shown in Figure 3-8. During write cycles, data
does not appear on the bus until the second clock. This allows time for the write data to
pass through the processor’s internal units, and it allows time for external bus transceiv-
ers to stabilize following any preceding read cycle. Write-data hold time is considerably
longer than read-data hold time, to accommodate slow memory. It may be necessary for
memory to latch the write-data address if the memory hold time is longer than the
processor hold time. Read-data setup and hold times are similar to RDY#. Since most
read requests by the processor are cache hits (no bus cycle), systems should optimize
their designs for processor write cycles.

Parity checking is done on read cycles. The PCHK# output indicates a parity error
during the preceding clock. It is valid one clock after RDY#. Only enabled bytes are
checked for parity. The processor will continue operating normally after parity errors.
External logic must latch parity errors and take any action that is required.

3.2.1.2 NON-CACHEABLE 3-3 CYCLES

If the external system is unable to respond to a read or write cycle within the specified
setup and hold times, RDY# must be de-asserted at the end of the second clock in the
bus cycle. This adds wait states (additional clock cycles) to the bus cycle. A bus cycle with
one wait state for both read and write cycles is called a “3-3” single-transfer cycle. In this
cycle, reads and writes each take three clocks, as shown in Figure 3-9. One wait state is
added for each clock that RDY# is withheld, so there can be “4-4” cycles, and so on.
Any number of wait states can be added, and external logic can add a different number
of wait states to read cycles than are added to write cycles.

The address bus, cycle definition, and data bus outputs remain stable during wait states.
However, BRDY# must be de-asserted on all clock edges where RDY# is de-asserted.
If this is not done, the processor may initiate a burst cycle. As with all data transfer
cycles, BLAST# is asserted during the final (in this case, third) clock of a 3-3 bus cycle.

Parity checking is the same as for 2-2 cycles. Where high performance is important,
systems should avoid wait states in favor of 2-2 cycles, described above, and burst cycles,
described below.

3.2.1.3 NON-CACHEABLE MULTIPLE-CYCLE SEQUENCES

A non-cacheable multiple-cycle sequence is a series of single-transfer cycles. A sequence
can be caused by internal requests from the processor or external requests from the
memory system. They are used when more than one doubleword of data needs to be
transferred. For example, the processor can cause the non-burst, non-cacheable
sequences by reading 128-bit instructions, 64-bit floating-point operands, or an unaligned
32-bit doubleword. The external memory system can cause the sequences when it reads
or writes 32- bit data over an 8- or 16-bit data bus.
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Figure 3-9. Non-Burst, Non-Cacheable 3-3 Cycle

Figure 3-10 shows such a multiple-cycle sequence; this one reads two data items in a
sequence of two bus cycles. The sequence begins exactly like a 2-2 cycle, with the asser-
tion of ADS# when the address and cycle definition signals are valid. The processor
then indicates that this is a multiple-cycle sequence by de-asserting BLAST# at the end
of the second clock of the first bus cycle. The external system asserts RDY#, completing
the first bus cycle. Each subsequent bus cycle in the sequence begins with the assertion
of ADS# and ends with the return of RDY#. The sequence ends when RDY# is
asserted while BLAST# is asserted.

If the data read or written in a multiple-cycle sequence is aligned to the width of the
data transferred (32, 64, or 128 bits), the PLOCK# signal is asserted as described below
in Section 3.3.6. Parity checking is the same as for 2-2 cycles.

3.2.1.4 CACHEABLE MULTIPLE-CYCLE SEQUENCES

Cacheable multiple-cycle sequences are used to fill a cache line in the processor’s inter-
nal cache. Only read sequences are cacheable. The cache does not support allocate-on-
write, and the KEN# input is not sampled during write cycles. Whenever a write is
internally generated, the processor will only put the data in its cache if data at the
address of the write is currently cached.
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Figure 3-10. Non-Burst, Non-Cacheable Multiple-Cycle Sequence

Cacheable read sequences are like the non-cacheable multiple-cycle sequences described
immediately above, except for the following conditions:

o KEN# —The cache enable input must be asserted both at the beginning and the end
of the cache line fill. ‘

o Cacheability— Only memory reads and instruction prefetches are cachéable. Locked
reads, interrupt acknowledge cycles, and I/O-mapped reads are not cacheable.

e Page Cache Disable Bit—The PCD bit in the page directory base register, CR3, must
be clear (zero).

o Cache Enable Bit—The CE bit in the machine status register, CR0, must be set (one).

If the conditions listed above are fulfilled, the processor will change a memory-read
request that could be satisfied by a single-transfer cycle into a cacheable multiple-cycle
sequence. KEN# must be asserted by the external system at the end of the first clock,
before RDY#. When this is done, the processor will continue to read an entire 16-byte
cache line. Figure 3-11 shows a sequence in which four doublewords are transferred in
four bus cycles, with no wait states. The processor will read all data by running between
4 and 16 contiguous bus cycles, depending on the bus size selected by BS16# or BS8#.

BLAST# is invalid and should be ignored during the first clock of the sequence. In

response to the assertion of KEN# in the first clock, the processor de-asserts BLAST#
one clock later. KEN# must also be asserted one clock before RDY# is returned for the
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Figure 3-11. Non-Burst, Cacheable Multiple-Cycle Sequence

final transfer of the sequence. This second assertion of KEN# causes the data to actu-
ally be placed in the internal cache; without this second assertion of KEN#, the data
read into the processor will not be written into the cache.

The processor samples the KEN# input every clock. The value sampled in the clock
before RDY# determines (1) whether a bus cycle should be transformed into a cache
line fill, and (2) whether a transformed bus cycle should be loaded into the cache after it
is fully read. Between its first and second assertions, KEN# is don’t care except at each
clock edge, when it must meet setup and hold times. KEN#, BS8#, and BS16# are
synchronous inputs. BS8# and BS16# are also sampled each clock to determine whether
additional bus cycles are needed to complete a transfer. Like KEN#, BS8# and BS16#
must meet setup and hold times at each clock edge.

Whenever a bus cycle is first converted to a cache line fill, the processor expects valid
data across its entire data bus. Thus, the BEO#-BE3# outputs (although valid) should
be ignored during the first transfer in a cache line fill, and the memory system should
supply valid data as if BEO#-BE3# were all asserted. The data expected is that
addressed by the A2-A31 signals. After the first transfer of the cache line fill, the byte-
enable signals should be used for all subsequent transfers in the cache line fill. This is
true for both non-burst and burst cache line fills. Section 3.2.2.8 describes how to distin-
guish the first transfer of a cacheable cycle. Data sequencing for burst cycles (which can
be cacheable or non-cacheable) has additional considerations described in the next
section.
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KEN# can change state several times before a single-transfer cycle is converted into a
cacheable multiple-cycle sequence, as described later in Section 3.2.2.4 and Figure 3-15.
Section 3.2.2.5 describes data alignment and sequencing of cacheable cycles, whether
non-burst or burst. Parity checking is the same as for 2-2 cycles.

3.2.2 Burst Cycles

Burst cycles are the fastest means of transferring data. Up to 16 bytes can be transferred
in a single burst. The fastest burst cycle requires two clocks for the first transfer and one
clock for all subsequent transfers; by comparison, non-burst cycles take a minimum of
two clocks for every transfer. Bursts have a limitation: they can transfer only address
contiguous, aligned blocks of data. Because of this, however, they allow memory devices
using static column decode to be accessed very quickly.

Burst cycles, like non-burst cycles, can be either cacheable or non-cacheable. Cacheable
bursts load a contiguous 16-byte aligned block of instructions or data into an internal
cache line, which the processor can access without a time-consuming bus cycle. Never-
theless, non-cacheable burst cycles also play an important part in performance. Any
multiple-cycle read by the processor can be converted into a burst. The processor will
only burst the number of bytes needed to complete a transfer. For example, only eight
bytes will be bursted in a 64-bit floating-point non-cacheable burst read. Both cacheable
and non-cacheable bursts can be interrupted or have wait states added. Burst writes can
occur only if the bus size is restricted (BS8# or BS16# asserted). This limitation may not
apply to future Intel processors, and designers should allow for longer burst writes in the
future. To allow for upward compatiblity in the future, the i486 processor always asserts
BLAST# during writes if BS8# or BS16# are de-asserted.

Parity checking is the same as for non-burst cycles. The PCHK# output indicates a
parity error on a data read during the preceding clock. It is valid one clock after
BRDY#. Only data signals which actually return data are checked for parity. The pro-
cessor will continue program execution after parity errors. External logic must latch
parity errors and take any action that is required.

The following text covers non-cacheable bursts first, then cacheable bursts. The basic
timing methods used in both types of burst are described in the non-cacheable burst
section, so it is important to read this even though your primary interest may be in
cacheable bursts.

3.2.2.1 NON-CACHEABLE BURSTS

The conditions for a non-cacheable burst cycle are:

o BRDY# —The burst ready input must be asserted instead of RDY#, with the same
timing as RDY#. ‘

e Burstability —Memory and I/O reads that require more than a single data transfer are
burstable. Instruction prefetches are burstable. Interrupt acknowledge cycles and
write cycles (except writes of up to four bytes on 16-bit or 8-bit bus sizes) are not
burstable.
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e Contiguous Data Alignment — Addresses of all data must fall within a contiguous
aligned area. The number of bytes transferred will be the number of bytes needed for
the specific operation.

Figure 3-12 shows a non-cacheable burst cycle; in this example, two doublewords are
transferred in three clocks. The burst begins with the processor driving an address and
asserting ADS#, in the same manner as for non-burst cycles. In addition, however, the
processor indicates that more than one data item is needed or can be accepted by hold-
ing BLAST# de-asserted at the end of the second clock. Simultaneously, the external
system indicates its preparedness for a burst by asserting BRDY# and de-asserting
RDY#. The BRDY# input has the same effect as RDY#; it indicates that the external
system has presented valid readable data or has accepted written data, and that the next
transfer in the cycle can begin.

While BLAST# is de-asserted at the end of the second clock in non-cacheable bursts,
the state of BLAST# should not be used by external logic to determine whether the
current burst is being cached. The de-assertion of the signal is governed by the state of
other signals, such as KEN#.

Thereafter, ADS# is no longer asserted. The addresses change for each data transfer,
after BRDY# is returned for the prior transfer. A4-A31 change only at the beginning of
the burst cycle, but A2-A3 and the byte enables signals change at the beginning of each
data transfer within the burst cycle.
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Figure 3-12. Non-Cacheable Burst Cycle
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For non-cacheable bursts, addresses will always increment after each data item is
returned. (This is not necessarily true for cacheable bursts, as described later in Section
3.2.2.5.) In Figure 3-12, for example, two doublewords are sequentially addressed.
BLAST# behaves exactly as it does in non-burst cycles. It is de-asserted at the end of
the second clock in the first data transfer, indicating that more transfers are needed to
complete the data transfers in the bus cycle. In the last transfer, BLAST# is asserted,
indicating that the end of the cycle will coincide with the next BRDY#.

For transfers which the processor cannot burst (interrupt acknowledge and all write
cycles that use the full 32-bit data bus width), the assertion of BRDY# has an effect
identical to RDY#. BRDY# is ignored if RDY# is returned in the same clock. Memory
areas that cannot perform bursting must terminate cycles with RDY#. If RDY# is
returned at any time during a burst cycle, bursting will stop and, if BLAST# is not
asserted (indicating that more transfers are needed to complete the cycle), the processor
will continue with non-burst transfers until all the data has been transferred.

3.2.2,2 CACHEABLE BURSTS

Cacheable burst cycles are the most important data transfer method for high-
performance systems. They are the fastest method for filling internal cache lines, the
internal cache is the processor’s fastest source of read data, and reading data is one of
the processor’s most time-consuming tasks.

To use cacheable burst cycles, these conditions for both burstability and cacheability
must be met:

o KEN# —The cache enable input must be asserted both at the beginning and at the
end of the cache line fill.

o BRDY# —The burst ready input must be asserted instead of RDY#, with the same
timing as RDY#.

e Burstability—Memory and 1/O reads that require more than a single data transfer are
burstable.

o 16-Byte Contiguous Data — A 16-byte aligned area of memory will always be read as a
cache line, irrespective of the starting address within the 16-byte area.

o Cacheability— Only memory reads and instruction prefetches are cacheable. Locked
reads, interrupt acknowledge cycles, and I/O-mapped reads are not cacheable.

o Page Cache Disable Bit—The PCD bit in the page directory base register, CR3, must
be clear (zero).

o Cache Enable Bit—The CE bit in the machine status register, CR0, must be set (one).

A cacheable burst cycle is shown in Figure 3-13. This is a cache line fill on the full 32-bit
data bus; it transfers four doublewords. The burst begins with the processor driving an
address and asserting ADS#, in the same manner as for non-burst cycles. The external
system asserts KEN# at the end of the first clock and de-asserts it shortly after the
beginning of the second clock. When KEN# is asserted and de-asserted in this manner,
the processor will de-assert BLAST#, indicating that more transfers are needed to com-
plete the cycle. The processor will then attempt to read all four doublewords. At the end
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Figure 3-13. Cacheable Burst Cycle

of the second clock, the external system strobes in the first doubleword and indicates its
preparedness for a burst by asserting BRDY# and de-asserting RDY#. BRDY# is
sampled in each clock and, if asserted, the data will be strobed into the processor.

The last three doublewords are transferred without ADS# being asserted; however,
addresses will change with each transfer to reflect the next item of data expected by the
processor. For the first transfer in the cache line fill, the processor expects valid data
across its entire data bus. During this first transfer, the BEO#-BE3# byte-enable outputs
(although valid) should be ignored and the external system should supply valid data as if
BEO#-BE3# were all asserted. The data expected is that addressed by the A2-A31
signals. The byte-enable signals for all subsequent cycles in the cache line fill can then be
used normally. Addresses will always fall within the same 16-byte aligned area, corre-
sponding to an internal cache line. Such an area begins at location xxxxxx0 and ends at
location xoooxxxF. Given the first address in the burst, external hardware can easily
calculate the addresses of subsequent transfers in advance. The sequence of addresses
depends on the first address sent out, as described below in Section 3.2.2.5.
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After the first BRDY# is returned, BLAST# will be asserted during the last transfer of
the cycle to indicate when the processor expects the burst to end. KEN# must be
asserted again at the end of the burst cycle, one clock before the last BRDY#. If KEN#
is not asserted properly, the four doublewords read into the processor will not be written
into the cache.

If BLAST# is asserted in the clock that BRDY# is returned, BRDY# is treated in the
same way as RDY#’; the burst transfer will come to an end, and the processor will
either drive a new bus cycle or the bus will go idle. If both BRDY# and RDY# are
asserted, BRDY# is ignored; in that case, the burst cycle is prematurely aborted, and a
new bus cycle will begin, if more cycles are needed to complete the cache line fill. For
the last data transfer in the burst cycle, BRDY# is treated the same as RDY#.

The BLAST# output is a function of the KEN#, BS8# and BS16# inputs sampled in
the previous clock. Because of this, BLAST# is not valid during the first clock of any bus
cycle, or when the bus is idle. BLAST# should be sampled only in the second and
subsequent clocks, when the first BRDY# of the cycle is returned.

Since BS8# and BS16# can change dynamically during a cycle, they can also cause
BLAST# to be de-asserted and then asserted again. This would happen, for example, if
BS8# were asserted during what the processor expects to be the last doubleword trans-
fer. The processor would perform four byte transfers, with BLAST# asserted during the
last transfer.

KEN# is ignored during write or I/O cycles. Memory writes will only be stored in the
cache if there is a cache hit (if data at that address had previously been read into the
cache and is still valid).

3.2.2.3 ADDING WAIT STATES

Burst cycles need not return data on each clock. The processor will only strobe burst
data in when BRDY# is asserted. Thus, keeping BRDY# de-asserted will delay the
transfer by adding wait states. This type of cycle, where each data transfer takes two
clocks, is shown in Figure 3-14.

3.2.2.4 CHANGING KEN# DURING A CACHEABLE CYCLE

KEN# can change several times at the beginning of a burst cycle, as long as it settles in
the clock before BRDY# or RDY# is asserted. This is shown in Figure 3-15, in which
wait states are added. The timing of BLAST# follows that of KEN# by one clock. In the
first clock of this example, KEN# is asserted by the external system and the processor
responds by de-asserting BLAST# in the next clock. In the second clock, KEN# is
de-asserted and, since neither BRDY# (for cacheable burst cycles) nor RDY# (for
cacheable non-burst cycles) are asserted, the cycle is converted back to a single-transfer
cycle. The processor responds by asserting BLAST# in the next clock. Finally, in the
third clock, KEN# is asserted again, converting the cycle back to a cache line fill, and
BLAST# is de-asserted in the next clock. BRDY# or RDY# is asserted in the fourth
clock, thereby starting the cache line fill.
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Figure 3-14. Slow Cacheable Burst Cycle
3.2.2.5 DATA ALIGNMENT AND SEQUENCING

The processor presents each request for data in an order determined by the first address
in the transfer, as shown in Table 3-9. The sequence accommodates either 64-bit or
32-bit buses and applies to all burst cycles, regardless of whether their purpose is to fill a
cache line, do a 64-bit read, or do a 16-byte instruction prefetch. Given the current
address, external logic can easily calculate in advance the addresses of subsequent
transfers.

Data transferred with burst cycles is expected on the same data signals as for non-burst
cycles. Data transfers can take place using 8- or 16-bit bus sizes. When either of these
smaller bus sizes is used, more transfers are needed to complete operations than would
be needed on the full 32-bit bus. If either BS8# or BS16# is asserted, the processor
completes the transfer of the current doubleword before proceeding to the next. Within
each doubleword, the high-order word is transferred first. Within each word, the high-
order byte is transferred first. For example, a cacheable cycle beginning at address 104
while BS16+# is asserted would generate a burst address sequence of 104, 106, 100, 102,
10C, 10E, 108, 10A. This is shown in Figure 3-16.

If either BS8# or BS16+# is asserted during a cacheable burst cycle, the burst could
stretch to as many as 16 data transfers (16 bytes on an 8-bit bus). The sequencing of
addresses and the location of data on the data bus are different in this case. For the first
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Figure 3-15. Changing KEN# during a Cacheable Cycle
Table 3-9. Burst Address Sequencing
First Address Second Address Third Address Fourth Address

prO O ®

C
8
4
0

O®s»O
oo b

transfer in the cache line fill, the processor expects valid data across its entire data bus.
The byte-enable outputs, BEO#-BE3#, should be ignored and the external system
should supply valid data as if BEO#-BE3# were all asserted. Both BS8# and BS16# are
sampled during the clock before each BRDY# is returned. Thus, the bus size inputs
should be held asserted throughout the entire burst, unless the addressed device can
dynamically alter its bus size during the cycle.

3.2.2.6 INSTRUCTION PREFETCH

Instruction prefetches are burstable data transfers which read, in advance of execution,
an aligned block of 16 bytes of instructions into the processor’s internal cache and
instruction prefetch units. The read is done with a burst transfer from sequentially
higher addresses. The instruction prefetch unit generates the addresses. Instruction
prefetch cycles have a unique encoding of the M/IO#, D/C# and W/R# signals, as
shown in Table 3-4.
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3.2.2.7 INTERRUPTED BURSTS

Some memory systems may not be able to respond with burst cycles in the address
sequence described in the previous section. To support such systems, the burst cycle may
be interrupted by asserting RDY# instead of BRDY#. After being interrupted, the
processor will automatically generate another normal burst cycle to complete the trans-
fers required. The external system can respond to an interrupted burst cycle with
another burst cycle.

Figure 3-17 shows a cacheable burst cycle being interrupted and converted to two burst
cycles. After RDY# is asserted, the processor immediately asserts ADS# to initiate a
new burst cycle. BLAST# is de-asserted one clock after ADS# begins in the second
burst cycle, indicating that the transfer is not complete. KEN# need not be asserted in
the first transfer of the second burst cycle, after the interruption. The operation will be
recognized as a cache line fill due to the assertion of KEN# during the burst preceding
the interrupt. The second part of the operation can itself be a burst.

Within the normal limits of burst transfers, there is no restriction on the number of
transfers that must be made with BRDY# before RDY# is asserted. If RDY# is
asserted and the processor indicates that the number of transfers required has not yet
been reached by continuing to de-assert BLAST#, then the processor immediately gen-
erates non-burst cycles using ADS# to complete the transfers.
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Figure 3-17. Interrupted Burst Cycle, Example #1

The order in which the processor addresses data during an interrupted burst cycle is
determined by Table 3-9. Mixing RDY# and BRDY# does not change this order. Fig-
ure 3-18 shows such an example, where the order of addresses may not be obvious. The
processor initially requests and receives the data at address 104. Then, the system asserts
RDY# instead of BRDY#. The processor begins a non-burst cycle by strobing address
100 with the ADS# signal. If BRDY# is asserted during the next clock, the processor
will expect address 10C to follow. The correct order is therefore determined by the
address during the first transfer of the entire operation. This may not be the same as the
address for the first transfer of the burst.

3.2.2.8 IDENTIFYING THE FIRST TRANSFER OF A CACHEABLE CYCLE

The byte-enables signals (BEO#-BE3#) are valid in any cycle or transfer except the first
transfer of a cacheable cycle. During such a transfer, BEO#-BE3# should be ignored
and the external system should supply valid data as if BEO#-BE3# were all asserted.

To determine the first transfer of a cacheable cycle, sample BLAST#, RDY#, and
BRDY#. If BLAST# is asserted with the immediately preceding RDY# or BRDY#,
then the next cacheable transfer will be the first transfer of a cacheable cycle.
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Figure 3-18. Interrupted Burst Cycle, Example #2

3.2.3 Bus Size

Two sets of signals work together to control the flow of cycles across 8- and 16-bit data
buses:

o Bus Size—The BS8# and BS16# inputs.
e Byte Enables —The BEO#-BE3# outputs.

The bus-size inputs are useful for interfacing to I[/O or ROM. The BS8# and BS16#
inputs allow the external system to specify, on a cycle-by-cycle basis, whether the exter-
nal device being addressed can supply 8 or 16 bits of data. BS8# and BS16#, together
with the address of data being accessed, control the sequence in which the BEO#-BE3#
outputs are driven. BEO#-BE3# tell the external device which of the bytes on the full
32-bit data bus are valid in any cycle or transfer. The only exception to this is in the first
transfer of a cacheable read cycle (cache line fill), when BEO#-BE3# should be ignored
and the external system should supply valid data as if BEO#-BE3# were all asserted.

Without BS8# or BS16# asserted, the data bus size is 32 bits. BS8# and BS16# can be
used in non-burst or burst cycles. If both BS8# and BS16# are asserted, only BS8# will
be recognized. Asserting BS8# or BS16# can cause the processor to run additional bus
cycles to complete a transfer.
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This interface to smaller bus sizes is quite different from that used in the 386 processor.
Unlike the 386 processor, the i486 processor expects to find data on all four addressed
bytes of the data bus. External logic must interface to all four bytes, using the BE0#-
BE3# outputs and detection of the first transfer of a cache line fill (see Section 3.2.2.8)
to steer the external byte swapper. For more on I/O interfacing, see Chapter 7.

3.2.3.1 TIMING

Figure 3-19 shows an example using BS8#. The processor requests 24 bits of informa-
tion. The external system asserts BS8#, indicating that only eight bits can be supplied
per cycle. The processor then runs two extra cycles to complete the transfer. The pro-
cessor samples BS8# and BS16# in the clock before RDY# is returned. The timing
requirements for BS8# and BS16# are identical to those for KEN#; asserting either of

the bus-size inputs one clock prior to asserting RDY# or BRDY# indicates the bus
width.

Extra cycles caused by BS8# or BS16# are independent bus cycles. The inputs should be
asserted for each additional cycles. The addressed device can change the number of
bytes it returns on a cycle-by-cycle basis. The processor will keep BLAST# de-asserted
until the last cycle of the transfer.
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Figure 3-19. 8-Bit Bus Size Cycle
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3.2.3.2 DATA ALIGNMENT

Because the processor operates on only bytes, words, and doublewords, certain combi-
nations of BEO#-BE3# are never produced. For example, a bus cycle is never performed
with only BEO# and BE2# active; such a transfer would be an operation on two non-
contiguous bytes at the same time. A single 3-byte transfer will never occur, but a 3-byte
address or data transfer followed or preceded by a 1-byte transfer can occur for mis-
aligned doubleword transfers.

The processor does not automatically align data on the processor bus from 16-bit or 8-bit
buses. Systems with 16- or 8-bit devices must use external logic to align their bytes on the
processor bus, as described in Chapter 7. Such devices are usually I/O, where the extra
delay is not a significant factor in overall performance.

While BS8# and BS16# are sampled every clock, only the state sampled in the clock
prior to the assertion of RDY# or BRDY# is used. If memory is running with no wait
states, the bus size inputs must be asserted in the same clock as the ADS# output. The
bus size inputs can be driven by static logic levels only if the entire physical memory and
I/O spaces use the same bus size.

3.2.3.3 MULTIPLE-CYCLE SEQUENCES

A single bus cycle may be converted to multiple bus cycles if the BS8# or BS16# inputs
are asserted. For example, a non-burst doubleword transfer will be converted to four
byte transfers if BS8# is asserted. Each of the four byte transfers will have the same
value on the A2-A31 address bus. The processor will attempt to read as many bytes as
possible. After the first byte of a doubleword is read, the processor will enable the three
remaining bytes on the second cycle. If BS8# is again asserted, the processor enables the
two remaining bytes on the third cycle. If BS16# is asserted in place of BS8#, the two
remaining bytes will be read during the third cycle, and the doubleword transfer will be
complete.

Table 3-10 shows the states of the byte-enable signals for the first and second bus cycles
of a multiple-cycle sequence in which either BS8# or BS16# are asserted.

3.2.3.4 CACHEABLE MEMORY READS

On small bus sizes, only memory reads can be cached, not I/O reads. In any cacheable
memory read, BEO#-BE3#, although valid, should be ignored during the first transfer of
a cacheable cycle. When a normal read cycle is promoted to a cacheable cycle by the
assertion of KEN#, the entire doubleword addressed by A2-A31 is read by the proces-
sor, even though only a few bytes may have been enabled. If an 8-bit bus size is selected,
the processor reads the lowest byte of this doubleword in the first cycle of the cache line
fill, even though the original bus cycle might not have selected this byte for reading. If a
16-bit bus size is selected, the processor reads the low word. On the second and follow-
ing transfers of the cache line fill, the BEO#-BE3# outputs correctly reflect which bytes
the processor expects.
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Table 3-10. Byte-Enable Signals With BS8# and BS16#

First Cycle Second Cycle, BS8# Second Cycle, BS16#

BE3# | BE2# | BE1# | BEO# | BE3# | BE2# | BE1# | BEO# | BE3# | BE2# | BE1# | BEO#

1 1 1 0 none none none none none none none none

1 1 0 0 1 1 0 1 none none none none

1 0 0 0 1 0 0 1 1 0 1 1

0 0 0 0 0 0 0 1 0 0 1 1

1 1 (U 1 none none none none none none none none

1 0 0 1 1 0 1 1 1 0 1 1

0 0 0 1 0 0 1 1 0 0 1 1

1 0 1 1 none none none none none none none none

0 0 1 1 0 1 1 1 none  none none none

0 1 1 1 none none none none none none none none

The processor might not use all of the enabled bytes when the BS8# or BS16# inputs
are asserted. Table 3-11 shows which bit positions are used by the processor for all of the
valid combinations of the byte-enable signals and for all bus sizes. The implied rule is:
when multiple bytes are enabled, return only the lowest byte(s) that the device on the
data bus can provide.

3.2.3.5 BURST CYCLES

Burst read cycles can be returned on 8- or 16- bit data buses. In this case, the burst cycle

could stretch to 16 transfers (16 bytes in a cache hne fill). The sequencmg of addresses
and data ic the
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Table 3-11. Data Bus Signals and Bus Size

BE3#  BE2#  BE1# - BEO# (22-3??3?2) (163-§i1tsgus) (a-gistaets)
1 1 1 0 DO-D7 D0-D7 DO-D7
1 1 0 0 D0-D15 DO-D15 DO-D7
1 0 0 0 DO-D23 DO-D15 DO-D7
0 0 0 0 DO-D31 DO-D15 DO-D7
1 1 0 1 D8-D15 D8-D15 D8-D15
1 0 0 1 D8-D23 D8-D15 D8-D15
0 0 0 1 D8-D31 D8-D15 D8-D15
1 0 1 1 D16-D23 D16-D23 D16-D23
0 0 1 1 D16-D31 D16-D31 D16-D23
0 1 1 1 D24-D31 D24-D31 D24-D31
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read or write could be done in four 8-bit burst cycles. An example of a burst write is
shown in Figure 3-20. Burst writes can occur only if BS8# or BS16# is asserted.

When running a burst cycle, the processor samples BS8# and BS16# in the clock before
each BRDY# is returned. Thus, the bus size inputs should be driven active throughout
the entire burst, unless the addressed device can change the number of bytes returned in
each cycle.

3.2.3.6 DECODING A0, A1 AND BHE#

If the system needs the low-order addresses AO-Al and a byte-high enable BHE#, these
can be generated from the byte-enable outputs, as shown in Table 3-12. Such signals may
be necessary in systems using earlier Intel processors.

In Table 3-12, the check marks () indicate all combinations of the byte enable signals
that are generated for cache line fills. As described earlier for cacheable cycles, the
processor expects valid data across its entire 32-bit data bus when a cycle is first con-
verted to a cache line fill. Thus, for the first transfer in a cache line fill, the byte-enable
outputs (BEO#-BE3#) should be ignored and the memory or I/O system should supply
valid data as if BEO#-BE3# were all asserted. The data expected is that addressed by
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Figure 3-20. Burst Write on 8-Bit Bus
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Table 3-12. Decoding A1, A0 (BLE#), and BHE# from Byte-Enables

Processor Outputs in :icr:satc:reariisrjzr':m Any Other Transfer
BE3# BE2# BE1# BEO# A1 A0 BHE# Al A0 BHE#
1 1 1 0 - - - 0 0 1
1 1 0 0 - — — 0 0 0
1 0 0 0 — — - 0 0 0
144 0 0 0 0 0 0 0 0 0 0
1 1 0 1 - - - 1 0 0
1 0 0 1 - - - 1 0 0
v 0 0 0 1 0 0 0 1 0 0
1 0 1 1 — - — 0 1 1
1% 0 0 1 1 0 1 0
I 0 1 1 1 1 1 0

v Marks all combinations of byte enable signals that will be generated after a cycle has been converted to
a cache line fill.

the A2-A31 signals. The processor will then generate the appropriate byte-enable signals
for all subsequent cycles in the cache line fill. This is true for both non-burst and burst
cache line fills.

Addressing and byte enabling for systems with a BHE# signal can be done with simple
external logic that derives Al, A0 (BLE#), and BHE# from the processor’s BEO#-
BE3# outputs. Figure 3-21 shows examples.

3.2.4 Parity Errors

The processor generates even-parity outputs (DP0-DP3) during writes, and checks for
even-parity inputs on the same signals during reads. Each signal is associated with one
byte on the processor bus, as shown earlier in Figure 3-2. If parity-checking is not used,
each of these signals should be tied high with 4.7KQ resistors and the PCHK# output
should be ignored. On writes, these bidirectional signals provide even parity for each
byte. (Even parity means that the parity bit is set or cleared so that there are an even

BEO#

240552i3-21

Figure 3-21. 16-Bit Interfacing to A0 (BLE#), A1 and BHE#
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number of high bits in the 9 byte-plus-parity bits.) The timing of these signals is the same
as the timing of the data bus. Additional memory required for parity may be imple-
mented by widening the memory array from 32 bits to 36 bits, but byte addressability
must be maintained.

When the processor detects odd parity during a read, it asserts the PCHK# output.
When either the BS8# or BS16# input is asserted, parity is checked only for the enabled
bytes. Parity is valid on all bytes which are selected by the byte-enable outputs BEO#-
BE3#, except during the first transfer of a cache line fill, in which case parity is valid on
all four bytes of the full 32-bit data bus.

PCHK# is valid only during the clock immediately following the clock in which RDY# is
returned, as shown earlier in Figure 3-8. PCHK# is never floated and is de-asserted at
all times other than the clock following RDY #. External logic must latch parity errors, if
the information is to be used; the processor continues program execution when a parity
error occurs.

A parity error is usually considered to be an unrecoverable condition, since the data or
instruction which is read is invalid. In these cases, a program which receives a parity
error should be terminated. Data read into the internal cache should be invalidated or
the entire cache must be flushed with the FLUSH# input. If the operating system
receives a parity error, the system may need to be shut down and restarted. The PCHK#
output is normally fed back to the processor to cause an interrupt and initiate recovery
or shutdown procedures.

If I/O ports do not support parity, the PCHK# output must be masked by a signal which
indicates access to an I/O port. This is true whether I/O-mapped or memory-mapped I/O
is used. The PCHK# signal is masked internally to prevent parity errors from being
reported for interrupt-acknowledge cycles.

3.3 BUS CONTROL

The bus control signals and special cycles govern access to the bus and handle extraor-
dinary conditions, like interrupts and reset. The controls are of two types:

e Signals and special bus cycles used in all systems:
Reset (RESET).
Interrupts (INTR and NMI).
Halt and Shutdown (special bus cycles).

o Signals used only in systems with more than one bus master:
Bus Hold (HOLD).
Bus Lock (LOCK#).
Bus Pseudo-Lock (PLOCK#).
Bus Backoff (BOFF#).
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3.3.1 RESET

The RESET input starts or restarts the processor. During reset, various tests can be
invoked. The i486 ™ Microprocessor Data Sheet gives complete information on reset and
testing. The discussion below is only an overview of how reset uses or affects the signals
on the processor bus.

When the processor detects a low-to-high transition on RESET, it terminates all activi-
ties. When RESET goes low again, the processor’s registers are initialized to a known
internal state, and the processor begins reading instructions from the reset address. The
RESET input is normally provided by the external clock generator, thereby ensuring a
stable reset signal common to the entire system.

If only the RESET input is asserted, only the processor’s non-floating-point states will be
initialized. The internal floating-point registers are undefined after RESET, with one
exception: if both Vcc and CLK are kept within specification during the entire cycle in
which RESET is asserted, the registers will be in the same state as they were on the
rising edge of RESET.

With RESET asserted, testing options are specified by asserting one or more of the
following three inputs, which are sampled on the falling (inactive) edge of RESET:

e AHOLD—If this input is asserted while RESET is asserted, the built-in self test
(BIST) will be invoked, and all processor states, both floating-point and non-floating-
point, will be initialized. Without the assertion of AHOLD, only the processor’s non-
floating-point states will be initialized. No bus cycles will be run until the BIST is
finished, although the bus signals will be driven.

o A20M# —This signal must be sampled asserted while RESET is asserted.

o FLUSH#—If this input is asserted while RESET is asserted, the high-impedance
(float) test mode will be invoked. All outputs and bidirectional signals are floated,
including signals normally driven during a hold (HLDA, BREQ, FERR# and
PCHK#). After RESET is de-asserted, the processor bus enters the idle state, Ti.
Outputs after RESET are shown in Table 3-13.

RESET must be kept asserted for the time shown in the data sheet. Upon power-up,
RESET must be held asserted for the specified period after Vcc and CLK stabilize to
allow the processor’s internal clock generator to synchronize with CLK.

Table 3-13. Processor Outputs after RESET

State Signals
High LOCK#, ADS#, PCHK#
Low HLDA, BREQ
High Impedance | D0-D31, DP0-DP3
Undefined A2-A31, BEO#-BE3#, W/R#, M/IO#, D/C#, PLOCK#, BLAST#, PCD, PWT , FERR#
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Before its first instruction fetch, the processor makes no requests for the bus and will
relinquish bus control if it receives a HOLD request. INTR and NMI are not recognized
before the first instruction fetch. Although maskable interrupts are disabled, it is not
possible to disable NMI. External hardware should ensure that an NMI does not occur
before the interrupt descriptor table (IDT) is built and the stack is initialized.

3.3.2 Interrupts

Interrupt requests are of three types: maskable hardware interrupts (INTR), non-
maskable hardware interrupts (NMI), and software interrupts (the INT instruction or
software exceptions). INTR and NMI are asynchronous to the clock. The processor will
not recognize an interrupt during a reset operation, and it will recognize only a single
NMI during a bus hold operation. The setup and hold times for NMI and INTR de-
assertion and subsequent assertion are given in the i486™ Microprocessor Data Sheet. For
details on the algorithmic response to interrupts and on the INT instruction, see the
i486™ Processor Programmer’s Reference Manual.

To service an interrupt, the processor completes its execution of the current instruction,
and saves its current state on the stack, along with task information if a task switch is
required. The processor then services the interrupt by transferring execution to one of
the 256 possible interrupt service routines defined in software. Entry-point descriptors to
the service routines are stored in an interrupt descriptor table (IDT) in memory. Not all
256 entry-point descriptors are available for general use; the first 32 are reserved by
Intel. To access a particular service routine, the processor needs an interrupt vector, or
index number, to the IDT location that contains the corresponding entry-point descrip-
tor. The source of the interrupt vector depends on the type of interrupt. Only INTR
interrupts cause the processor to query external hardware for the interrupt vector; NMI
interrupts always use same vector, and software interrupts specify the vector as an oper-
and within the instruction or exception.

3.3.2.1 NON-MASKABLE INTERRUPTS

Assertion of the NMI input typically indicates a catastrophic event which requires imme-
diate attention, such as imminent power loss, bus-transfer parity error, or memory-data
parity error. The input has a two-clock-cycle synchronizer to ensure stability. NMI is
edge-triggered; the rising edge of the signal, after internal synchronization with the
clock, is used to generate the interrupt request. NMI must first be de-asserted for at
least two clocks and then asserted. The request need not remain active until the inter-
rupt is serviced; NMI need only be active for a single clock, if it meets the setup and hold
requirements. NMI will also operate properly if it is held active for an arbitrary number
of clocks. In order for a second non-maskable interrupt to be latched while an earlier
one is being serviced, the NMI input must again be de-asserted for at least two clocks
before its second assertion. Only one NMI can be latched and held pending; all others
will be lost.

Interrupt acknowledgement cycles are not performed to obtain the interrupt vector.
Instead, a recognized NMI always causes the processor to execute the service routine
referenced by the entry-point descriptor at location 2 in the interrupt descriptor table.
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To prevent recursive NMI calls, NMI is internally masked whenever the NMI routine is
entered, until the IRET instruction is executed. During NMI interrupts in the Real-
Address Mode, the processor disables INTR requests, although these can be re-enabled
in the service routine. In Protected Mode, the disabling of INTR requests depends on
the gate in location 2 of the IDT.

3.3.2.2 MASKABLE INTERRUPTS

Unlike NMI, the INTR input is level-sensitive; INTR must be held asserted until the
processor services the interrupt. Like NMI, the INTR input has a two-clock-cycle syn-
chronizer to ensure stability. A valid INTR input will be seen by the internal instruction
execution unit two clocks after it appears at the pin. INTR is sampled at the beginning
of every instruction.

INTR must first be de-asserted and then asserted continuously until it is acknowledged.
Setup and hold times are given in the data sheet. The interrupt will be serviced, unless
the signal is masked by the IF (bit 9) flag in the EFLAGS register. This flag is cleared
automatically when an interrupt operation is initiated; it prevents successive interrupts
from arriving too closely. INTR will be ignored for as long as the flag is clear. The flag
should be set by software at an appropriate point in the interrupt service routine.

The processor acknowledges INTR by performing two locked read cycles which request
external logic to provide the interrupt vector. The entire interrupt-acknowledgement
operation is shown in Figure 3-22. Interrupt-acknowledge transfers are the same as nor-
mal data transfers, except for the A2 signal. For interrupt acknowledgement, the princi-
pal signal configuration is:

¢ ADS# —driven low to indicate the start of each transfer.

o M/IO#, D/C#, W/R# —driven low to indicate interrupt acknowledgement.
¢ LOCK# —driven low to block any hold operations during both transfers.
¢ A31-A3 and BEO# —driven low during both transfers.

¢ A2—driven high during the first transfer and low during the second.

o BE3#, BE2# and BEI# —driven high during both transfers.

During the first read cycle shown in Figure 3-22, all data on the bus is ignored. As with
normal transfers, RDY# must be returned to the processor to terminate the cycle.
BRDY# can also be returned, although interrupt acknowledgement cycles are not burst-
able. The processor then inserts four idle clocks before starting the second read cycle.
During the second read, the data on the lowest byte of the data bus (D7-D0) is assumed
to be the interrupt vector. Wait states can be added by withholding RDY#.

Maskable interrupts can be nested until the stack overflows. Nesting will occur if an
interrupt is recognized and the interrupt flag is set while a previous interrupt operation
has not yet completed. The latest interrupt to be recognized will be the first one ser-
viced. If both NMI and INTR are recognized simultaneously, NMI takes precedence.
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Figure 3-22. Interrupt Acknowledgement Timing

3.3.2.3 INTERRUPT LATENCY

The time that elapses before an interrupt request is serviced (interrupt latency) varies
according to the following factors:

o NMI—If a non-maskable interrupt is being serviced, another incoming NMI will not
be serviced until the processor executes an IRET instruction.

e INTR—If INTR interrupts are masked, they will not be serviced until they are
re-enabled.

o Instruction Execution—If the processor is currently executing an instruction, the
instruction will usually be completed. Interrupts are serviced only at instruction
boundaries, except that (1) iterated string instructions can be interrupted at iteration
‘boundaries, and (2) transcendental floating-point instructions can be interrupted at
various points.

e Register Loads and Saves — Interrupts are not serviced when the contents of registers
are being saved. During task switching, registers must be saved and restored before
interrupts are recognized. If an instruction loads the stack segment register or sets the
interrupt flag, interrupts are not processed until after the next instruction.

The internal instruction execution unit will only act on an NMI or INTR interrupt at
instruction boundaries or (in the case of string-move instructions) at instruction-iteration
boundaries. The longest latency can.be expected when a request is received during exe-
cution of a long instruction, such as multiplication.

For an interrupt to be acknowledged at the end of a specific instruction, the interrupt

must be asserted at least three clocks before the end of the instruction execution. This
allows the interrupt to pass through the two-clock-cycle synchronizer (both NMI and
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INTR have these synchronizers) and leaves a third clock for completion of any instruc-
tion currently being executed (i.e. to prevent the initiation of the next sequential instruc-
tion, and to begin the interrupt service instead). If the interrupt is not received by the
internal execution unit in time to prevent the execution of the next instruction, it will be
acted upon at the end of that instruction (provided INTR is still asserted). The
interrupt-service microcode will start after two idle clocks.

Thus, the longest latency time will be determined by:
¢ Two clocks for interrupt synchronization, plus

o The longest instruction used (such as multiplication, division, or a task switch in
Protected Mode), plus

¢ Two idle clocks, plus

o One clock to vector into the interrupt service microcode.

NMI latency is the same as INTR latency, with two exceptions: (1) since NMIs are not
masked, disabling by software cannot not add to their latency, and (2) since NMIs are
automatically disabled whenever their interrupt service routine is executed, the length of
the NMI routine itself will contribute to maximum NMI latency.

3.3.2.4 THE 8259A INTERRUPT CONTROLLER

Maskable interrupts to the processor can be handled directly by the 8259A interrupt
controller. This device can coordinate the interrupt requests of up to eight devices and
can be cascaded with other 8259As to handle as many as 64 devices. The 8259A is
controlled by commands from the i486 processor and appears as a series of /O ports to
the processor. These ports are used to configure masks and priorities for the interrupt
input signals.

When a device signals an interrupt request, the 8259A determines its priority relative to
other requests, and asserts INTR to the processor. When this signal is serviced, the
processor allows the 8259A sufficient recovery time to provide the 8-bit interrupt vector
during the second acknowledgement cycle. System logic may be required to delay the
RDY# signals during the transfers in order to comply with the minimum pulse-width
requirements of the 8259A.

3.3.3 Special Bus Cycles

Special bus cycles are initiated by the processor in the same way as data transfers, except
that the cycle-definition signals have the values shown in Table 3-14. One of four oper-
ations is specified by the BEO#-BE3# outputs normally used for byte enabling on the
data bus. Special bus operations use the same bus-signal protocol as data transfers,
including the assertion of either the RDY# or BRDY# signals to acknowledge comple-
tion of the operation.
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Table 3-14. Special Bus Cycles

M/IO# D/C# W/R# BE3# BE2# BE1# BEO# Operation
0 0 1 1 1 1 0 Shutdown
0 0 1 1 1 0 1 Cache Flush
0 0 1 1 0 1 1 Halt
0 0 1 0 1 1 1 Cache Write-Back and Flush

Shutdown and halt are described immediately below. The coding of the M/IO# signal is
reversed from that in the 386 processor for halt and shutdown. The cache flush cycle and
the cache write-back and flush cycle are discussed later in Section 3.4.

3.3.3.1 HALT

Halt occurs upon execution of a HLT instruction. The instruction can be used as a
response to an unrecoverable error, such as a parity error, or to a program error. Halt
can also be used to indicate that the processor has failed the built-in self test invoked on
reset. The appropriate response depends on the details of system implementation.

Externally, a halt differs from a shutdown only in the resulting address-bus outputs and
in the processor’s ability to acknowledge a bus hold while in the halt condition. The
processor will remain in the halt condition until one of three inputs is asserted:

o INTR
o NMI
e RESET

3.3.3.2 SHUTDOWN

Shutdown occurs when the processor is handling a double fault and encounters a pro-
tection fault. This indicates an error in operating-system data structures, such as task-
state segment descriptors (if tasks are used for exception handling), segment descriptors,
or page-table entries. It may be desirable to invoke an NMI interrupt handler to record
diagnostic information.

While in shutdown mode, the processor cannot perform any bus operations. The proces-
sor will remain shut down until one of two inputs is asserted:

e NMI
e RESET

3.3.4 Bus Hold

Bus masters other than the processor take control of the bus by causing the assertion of
the HOLD input. When HOLD is asserted, the processor completes the current bus
operation or sequence of locked or pseudo-locked cycles, floats most of its outputs to
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high impedance, and asserts the HLDA acknowledgement. The bus stays in the hold
state until HOLD is de-asserted. During bus hold, the processor continues operation
with the information in its internal cache and instruction prefetch unit, until it needs
access to the bus again; then it asserts BREQ.

Bus hold uses the same hold-acknowledge protocol found in earlier Intel 8086-family
processors. The HLDA, BREQ, PCHK# and FERR# outputs are not floated and can
be asserted during bus hold. The processor will recognize and respond to HOLD during
reset; none of the outputs that are floated in response to HOLD are provided with
internal pullup resistors. During bus hold, the AHOLD, EADS#, and BOFF# inputs
are recognized. The AHOLD (address hold) input is not associated with the bus hold
operation; it is used for cache invalidation, as described in Section 3.4.

The following operations are completed before a bus hold is acknowledged:

e The current bus cycle in progress (whether burst or non-burst) or the current
sequence of bus cycles for which BLAST# is de-asserted in all but the last data
transfer.

¢ Pseudo-locked cycles—i.e., multiple-cycle sequences during which PLOCK# is
asserted.

e Locked cycles.

Multiple processors can be in bus hold, and an external arbitration unit can use their bus
request signals to see which processors are ready to perform bus cycles.

3.3.4.1 TIMING

When HOLD# is asserted, the processor stops driving the following outputs:
o A2-A3l.

e DO0-D31.

e DP0-DP3.

o BE(O#-BE3#.

s PWT, PCD.

e M/IO#, D/C#, and W/R#.
o LOCK#.

o PLOCK#.

o ADS#.

o BLAST#.

The processor’s acknowledgement consists of floating all address and data bus signals
and asserting HLDA, as shown in Figure 3-23. LOCK#, M/IO#, D/C#, W/R#, ADS#,
A2-A31, BEO#-BE3# and DO0-D31 are held in the high-impedance condition. Some
signals such as ADS# and LOCK# may require external pull-up resistors to guarantee
that they remain inactive during transitions between bus masters.
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Figure 3-23. Bus Hold Timing

Since BREQ, HLDA, PCHK# and FERR# are not floated, they must not be driven by
any other bus master. The processor will remain in the hold state until after HOLD is
de-asserted. The requesting bus master must maintain HOLD asserted until it is ready to
pass control back to the processor.

During hold, the processor continues to execute from the internal instruction prefetch
unit and cache until it needs access to the bus. The processor can generate and store up
to four write cycles, until bus access is again granted, as discussed in Chapter 2. In a read
cycle, an instruction fetch that misses in the internal cache, or more than four write
cycles are needed, execution stops until the bus is available.

During hold, the processor monitors only HOLD, RESET, NMI, and INTR. One NMI
request will be recognized and latched for acknowledgement after the end of the hold
operation. While INTR is monitored during hold, the input must be held asserted until
the interrupt acknowledge cycle is run, after the end of the hold operation.

Once HOLD is de-asserted, the processor drives the bus and de-asserts HLDA on the
next clock. If a bus cycle is pending in the processor, the bus cycle will begin on that
clock.

3.3.4.2 HOLD LATENCY

Maximum HOLD latency is determined by the maximum duration of locked cycles.
Asserting AHOLD may prevent the processor from recognizing HOLD. For example,
asserting AHOLD during the third of four BS8# cycles will prevent HOLD from being
recognized.

3-51



H ®
intel PROCESSOR BUS

For details on LOCK# latency, see Section 3.3.5 immediately below. Other details and
values are given in the i486™ Microprocessor Data Sheet.

3.3.5 Bus Lock

When the LOCK# output is asserted, the processor will not acknowledge a bus hold
request. Bus locking prevents interruption of contiguous processor cycles that need to be
kept integral. Figure 3-24 shows a typical example of how the signal is used. The signal is
generated by:

o Read-Modify-Write Operations:
— Executing a TEST or SET instruction (semaphor updates).
— Executing an XCHG instruction with a memory operand.
— The LOCK prefix on certain instructions (such as XADD and CMPXCHG).
— Updating the accessed bit in segment descriptors.
— Updating the accessed and dirty bits in page table entries.
— Setting the busy bit in a task state segment (TSS) descriptor.
— Setting the access bit in a segment descriptor.
o Interrupt Acknowledge Cycles.

CLK [ [ [

B 1
ADS# [ \
I

I
A2=A31 L

M/10# "

1

1

]

1

:

b/cC# . 1
BEO-3# | | X
) !

| |

1

1

1

W/R# : \ ’

| ! I
Rov#  RXKKRKRAKKRKRAKAKKRKAAKAARY | /ARKKRRKRRARRARRN | /AAKAAAN
| ! 1 I [
i I

DATA

|
!
| CPU
!
|
|

LOCK# —\
!

)
'
|
T
|
'
'
'
1
I

READ WRITE

240552i3-24

Figure 3-24. Locked Bus Cycles
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Locked read cycles are not cacheable. In systems with an external cache between the
processor bus and a system bus, locked cycles should always cause a system-bus cycle.
This will ensure consistent synchronization between multiple agents on the system bus.
During locked cycles, the processor will not recognize a HOLD request, but it will rec-
ognize BOFF# and AHOLD requests.

3.3.5.1 TIMING

Figure 3-24 shows a sequence of locked cycles. The LOCK# output is asserted on the
rising clock edge of the first locked bus cycle, at the same time as ADS#, and it is
de-asserted after RDY# is asserted at the end of the last bus cycle to be locked. Maxi-
mum duration of the LOCK# signal affects the maximum HOLD request latency
because HOLD is not recognized until LOCK# is de-asserted. The duration of LOCK#
depends on the instruction being executed and the number of wait states per cycle.

In Real Mode, the longest duration of LOCK# is two bus cycles plus approximately two
clocks. This occurs during the XCHG instruction and during locked read-modify-write
operations. In protected mode, the longest duration of LOCK# is five bus cycles plus
approximately 15 clocks. This occurs when a hardware or software interrupt occurs and
the processor performs a locked read of the gate in the interrupt descriptor table
(8 bytes), a read of the target descriptor (8 bytes), and a write of the accessed bit in the
target descriptor. The insertion of wait states will affect the length of the required bus
cycles.

3.3.5.2 SEMAPHOR APPLICATIONS

LOCK# is used for read-modify-write operations on memory-based semaphors, as
shown in Figure 3-25. The value of a semaphore indicates a condition, such as the
availability of a resource. If the processor reads a semaphore, determines that a resource
is available, and writes a new value to the semaphore to indicate that it intends to take
control of the resource, the read and write cycles should be locked to prevent another
bus master from reading or writing the semaphore between the processor’s two bus
cycles.

3.3.5.3 LOCK LATENCY

Execution of the LOCK instruction causes the assertion of the LOCK# output for two
bus cycles (each of which may split into multiple cycles for misaligned data or for 8- or
16-bit bus sizes), plus four clocks for ALU computation.

References to the global descriptor table (GDT) or the local descriptor table (LDT) will
lock the bus to set the accessed (A) bit for memory descriptors (if not already set).
Descriptors are read without LOCK# asserted. If the A bit is not set, the descriptor is
re-read with LOCK# asserted (two 4-byte read cycles), the A bit is set, and then four
bytes are written to store the updated half of the descriptor. This keeps LOCK#
asserted for three bus cycles (two reads, then one write), plus eight clocks. Once the
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Figure 3-25. Semaphor Passing with Non-Locked Cycles

accessed bit is set, subsequent reads of the same descriptor will use unlocked cycles.
Operating system software can minimize LOCK# duration by aligning descriptor tables
to 8-byte boundaries and storing these tables in 32-bit memory, avoiding use of BS8#

and BS16#.

Page table references will assert LOCK# to set the dirty (D) and/or accessed (A) bits in
the page-directory or page-table entries. First, the entry is read with LOCK#
de-asserted. If either bit is clear, the entry is re-read, with LOCK# asserted, the appro-
priate bit is set, and then the entry is written back to memory. LOCK# is asserted for
two bus cycles plus four clocks. Page table entires are always aligned, but again, storage
in 32-bit memory will avoid the possibility of BS8# or BS16# lengthening the lock

latency.
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The worst-case lock latency occurs when reading a descriptor table entry: it takes
8 clocks, plus 2 read cycles, plus 1 write cycle. The worst-case use of the LOCK instruc-
tion prefix occurs with a locked BTS, BTC, or BTR instruction: these take 4 clocks, plus
1 read cycle, plus 1 write cycle (each of which may split into multiple cycles for mis-
aligned data or for 8- or 16-bit bus sizes).

3.3.6 Bus Pseudo-Lock

The PLOCK# output offers a new protection, not available in the 386 processor. The
signal performs a function identical to that of LOCK# — the processor will not acknowl-
edge a bus hold request while PLOCK# is asserted, thereby preventing interruption of
contiguous processor cycles that must be kept integral —but PLOCK# is asserted under
circumstances which are different than LOCK#. Pseudo-locking protects transfers of
aligned data that are longer than 32 bits. It is asserted only for cycles in a single direction
(read cycles or write cycles, but not read-modify-write cycles). Figure 3-25 shows a typi-
cal example of how the signal is used. During pseudo-locked cycles, the processor will
not recognize a HOLD request, although it will recognize a BOFF# or AHOLD
request.

The PLOCK# output is generated by:

o Any data transfer longer than 32 bits, in which the data is aligned to boundaries equal
to the data-structure size —i.e., any multiple-cycle sequence with aligned data.

e Whenever BLAST# is de-asserted (this case overlaps with the one above).
¢ During the first cycle of 64-bit floating-point writes.

Pseudo-locked cycles include 128-bit cache line fills, 64-bit floating-point operand reads
or writes, and doubieword transfers on an 8- or 16-bit bus. In 80-bii floating-point oper-
ands, only the first 64 bits are pseudo-locked. PLOCK# is asserted predictably only if
the transferred data is aligned to boundaries equal to the data-structure size: 32-bit data
must be aligned to 4-byte boundaries, 64-bit data must be aligned to 8-byte boundaries,
and 128-bit cache line fills must be aligned to 16-byte boundaries. Otherwise, additional
transfers will be necessary, and the additional transfers may not be pseudo-locked to the
normally required transfers.

The processor bursts read cycles longer than 32 bits whenever it can. In burst cycles, all
of the data is transferred in a single bus cycle. PLOCK# is only useful to external logic
in transfers which need more than one bus cycle. In systems which do not interrupt burst
cycles with BOFF#, no special provision for examining PLOCK# is needed during burst
reads. However, the system must examine PLOCK# during 64-bit writes, which need at
least two data transfers. In 64-bit writes, BLAST# is asserted at the end of each data
transfer but PLOCK# is asserted at the end of the first transfer and into the first part of
the second transfer. The assertion of PLOCK# indicates that another data transfer is
pending. Figure 3-26 shows the timing of PLOCK# in a 64-bit write. Access to 80-bit
operands use pseudo-locked bus cycles; however, only the 64 bits at the lowest addresses
are transferred in pseudo-locked bus cycles.
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Figure 3-26. Pseudo-Locked 64-Bit Write Cycle

PLOCK# should be sampled only in the clock in which RDY# or BRDY# is asserted,
as shown in Figure 3-26. Assertion of PLOCK# indicates that the next cycle is pseudo-
locked to the current cycle. PLOCK# and BLAST# are always the inverse of each
other, except during the first transfer of a 64-bit floating-point write. PLOCK# is a
function of the KEN#, BS8#, and BS16# inputs. PLOCK# may change state during a
cycle, but it is stable in the clock in which RDY# or BRDY# is asserted.

In systems with an external cache between the processor bus and a system bus, pseudo-
locked cycles (unlike locked cycles) would not typically cause a system-bus cycle on
external cache hits. The pseudo-locked cycle should be confined to the processor bus
and the external cache controller should not allow system-bus activity to intervene with
pseudo-locked cycles on the processor bus.

There are some situations in which both PLOCK# and LOCK# will be asserted
simultaneously —for example, during 64-bit segment descriptor loads, which are oper-
ands longer than 32 bits (thus, protected by PLOCK#) but which are also specifically
protected by LOCK#.

3.3.7 Bus Backoff
Some bus cycles initiated by the processor may require, for their corhpletion, an external

bus master to complete bus cycles of its own. For example, access to data which is held in
the external cache of another processor may require the other processor to write-back
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the cached data to memory. Bus backoff is used to avoid this “deadly embrace,” where
neither the processor nor the other bus master can complete its operation, since each is
waiting for something from the other. The BOFF# input indicates that another bus
master needs to complete a bus cycle in order for the processor’s current cycle to com-
plete. The processor’s response to bus backoff is similar to the bus hold operation, but
more immediate; the processor releases the bus in the next clock, and no acknowledg-
ment is given. When BOFF# is de-asserted, the processor will reliably restart the same
bus cycle that was aborted.

Bus backoff is also known as bus cycle restart because any cycle in progress when BOFF#
was asserted will be restarted when BOFF# is de-asserted. The restarted cycle will begin
with a new assertion of ADS# but the transfer will continue from its state at the clock in
which BOFF# was asserted. Any transfer complete before BOFF# was asserted will be
assumed correct and will not be repeated.

Chapters 6 and 8 contain more information on how BOFF# is used in a system design.

3.3.7.1 TIMING

BOFF# is sampled in every clock cycle. When the signal is asserted, the processor stops
driving the following outputs:

o A2-A31.

e DO0-D31.

e DPO-DP3.

o BEO#-BE3#.

o PWT, PCD.

o M/IO#, D/C#, and W/R#.
o LOCK#.

e PLOCK#.

o ADS#.

o BLAST#.

Bus backoff takes effect more immediately than bus hold: the processor floats the signals
listed above in the clock following the assertion of BOFF#. Burst cycles and other types
of cycles may be stopped and held pending for the duration of the backoff operation.
Bus backoff continues until the clock following the de-assertion of BOFF#, as shown in
Figures 3-27 and 3-28. If BOFF# is asserted during a write cycle, the processor will float
its data bus in addition to the signals listed above.

On assertion of BOFF#, the current bus cycle is suspended in a state which allows
reliable restarting after BOFF# is de-asserted. Any data returned during the cycle in
which BOFF# was recognized, or while BOFF# is asserted, is ignored. If RDY# or
BRDY# is asserted simultaneously with BOFF#, only BOFF# will be recognized. If
BOFF# is asserted after the processor has already begun a bus cycle, it may be neces-
sary for the device which asserts BOFF# to wait for the assertion of RDY# or BRDY#
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Figure 3-27. Bus Backoff and Restart during a Read Cycle

before starting a new cycle. This verifies that the memory system is ready to accept
another bus cycle. If BOFF# is asserted while the bus is idle, the processor will go into
bus hold in the next clock. Thus, the signal can prevent a subsequent bus cycle from
starting.

RDY# and BRDY# need not be asserted if the processor is not performing a data
transfer at the time bus backoff occurs. A state machine used to track the operation of
the bus can indicate when a bus cycle is in progress. During backoff, the processor floats
the same signals as during a hold operation, but HLDA is not asserted. The data bus is
floated if BOFF# is asserted during a write cycle. Each turnaround of the bus between
bus masters takes two clocks to ensure that there is no overlap of control on the bus.

3.3.7.2 CAUTIONS

If bus backoff occurs during a burst transfer, instruction prefetch, or cache line fill, any
cycles which have been completed with assertion of RDY# or BRDY# are not
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Figure 3-28. Bus Backoff and Restart during a Write Cycle

restarted. Data obtained in these cycles is assumed to be good. The burst transfer,
instruction prefetch, or cache line fill continues with its next transfer after BOFF# is
de-asserted.

If BOFF# is asserted during a burst cycle or when BS8# or BS16# is asserted, the

that 1 data £
processor will be forced to ignore data returned for that cycle only; data from previous

cycles must still be valid. For example, if BOFF# is asserted on the third RDY# of a
burst cycle, the processor assumes that the data returned with the first and second
RDY# is valid, and it restarts the burst beginning with the third cycle. The s<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>